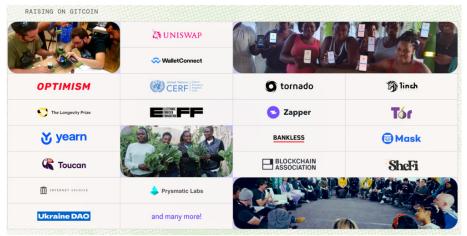
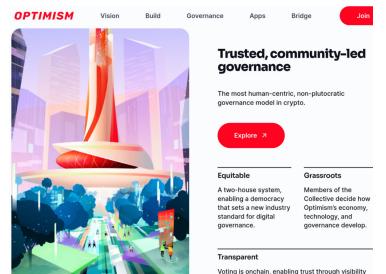

Public Projects with Preferences and Predictions¹


Bo Waggoner University of Colorado, Boulder

ESSET, Gerzensee July 2024

 $^{^1\}mathsf{Based}$ on joint work with Mary Monroe. Supported by the Ethereum Foundation.


Gitcoin (2017-):

- \$60M distributed
- Uses "quadratic funding" donation-matching

Layer 2's and platforms:

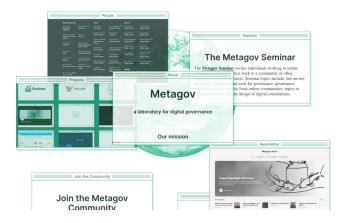
e.g. Uniswap (2018-), Arbitrum (2018/2021-), Optimism (2019-)

Layer 2's and platforms:

e.g. Uniswap (2018-), Arbitrum (2018/2021-), Optimism (2019-)

AMAKA NWAOKOCHA

JUN 09, 2024

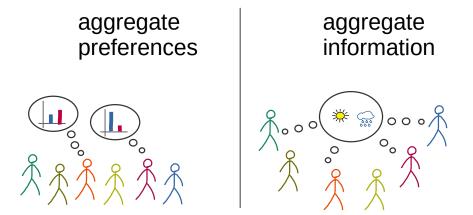

Arbitrum to distribute \$215M in ARB tokens for gaming innovation

Initially introduced in March, the proposal was approved on June 7, with over 75% of votes in favor.

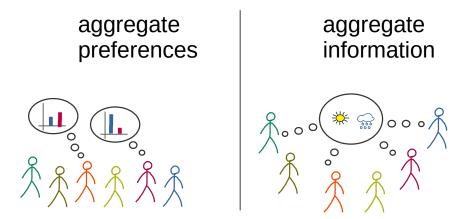
Non-mechanism design governance research, e.g. at CU Boulder:

- Nathan Schneider: co-ops perspective, e.g. Metagov
- Eric Alston: government & corporation perspective, e.g. constitutions

aggregate preferences



aggregate preferences



aggregate information

Can a formal mechanism do both?

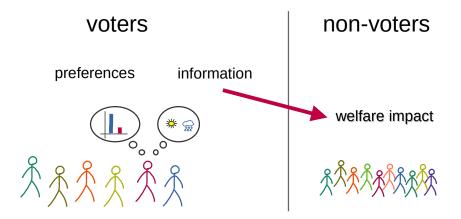
Can a formal mechanism do both?

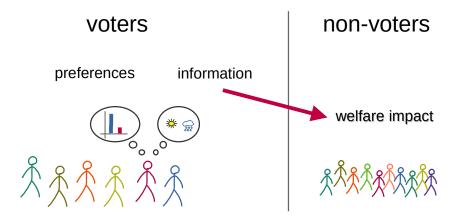
Hanson ("futarchy", 2000; 2007); Schoenebeck and Tao (2021); Amanatidis, Birmpas, Lazos, and Marmolejo-Cossío (2022)

voters

mission

e.g. minimize carbon footprint


voters


non-voters

welfare impact

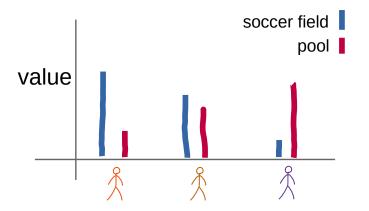
Goal: welfare guarantees ("Price of Anarchy")

Outline:

- 1 Public Projects from preferences
- 2 Public Projects from predictions
- 3 Public Projects with preferences and predictions

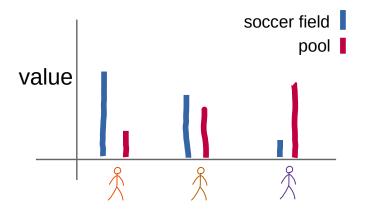
Outline:

1 Public Projects from preferences


- Model, definitions
- Related work: VCG, QTM
- Our results: QTM

2 Public Projects from predictions

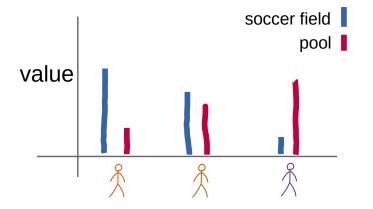
3 Public Projects with preferences and predictions


Each agent i has a value v_k^i for each option k

nonnegative

Each agent i has a value \boldsymbol{v}_k^i for each option k

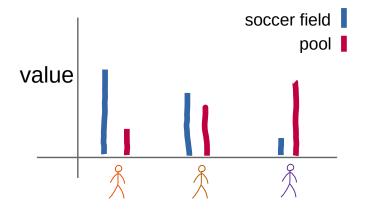
• Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$



nonnegative

Each agent i has a value \boldsymbol{v}_k^i for each option k

nonnegative


- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k, assign payments

Each agent i has a value \boldsymbol{v}_k^i for each option k

auasilinear

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k, assign payments
- Net utility of agent *i*: v_k^i payment

Each agent i has a value \boldsymbol{v}_k^i for each option k

nonnegative

quasilinear

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k, assign payments
- Net utility of agent $i: v_k^i payment$

Price of Anarchy

Each agent i has a value \boldsymbol{v}_k^i for each option k

nonnegative

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k, assign payments
- Net utility of agent $i: v_k^i payment$

quasilinear

$$\frac{\mathbb{E}[V_k]}{\max_{k'} V_{k'}}$$

Each agent i has a value \boldsymbol{v}_k^i for each option k

nonnegative

quasilinear

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k, assign payments
- Net utility of agent $i: v_k^i payment$

Price of Anarchy =
$$\min_{\text{equilibria}} \frac{\mathbb{E}[V_k]}{\max_{k'} V_{k'}}$$

our mechanisms: pure-strategy Nash equilibria (convex strategy space, strictly concave utilities)

Related work

• VCG mechanism: Price of Anarchy = 0

efficient equil. exists

Not budget-balanced, revenue unstable

Related work

VCG mechanism: Price of Anarchy = 0 Not budget-balanced, revenue unstable efficient equil. exists

• "First-price":² Price of Anarchy $\rightarrow 0$ but sequential model: = 1

²Lucier, Singer, Syrgkanis, Tardos (2013)

Related work

VCG mechanism: Price of Anarchy = 0 Not budget-balanced, revenue unstable efficient equil. exists

• **"First-price"**:² Price of Anarchy $\rightarrow 0$

but sequential model: = 1

• Quadratic Transfers Mechanism:³ In an i.i.d. model, Price of Anarchy $\rightarrow 1$ as population grows large

²Lucier, Singer, Syrgkanis, Tardos (2013)

³Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

Agent *i* submits votes $\{a_k^i\}$

⁴Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

Agent i submits votes $\{a_k^i\}$ and pays $c\sum_k (a_k^i)^2$

c = a parameter

can redistribute payment to all others \implies budget-balanced

⁴Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

Agent *i* submits votes $\{a_k^i\}$ and pays $c \sum_k (a_k^i)^2$ can redistribute payment to all others \implies budget-balanced

c = a parameter

Let $A_k = \sum_i a_k^i = \text{total votes for option } k$

Pick $k = \arg \max A_k$ (?)

⁴Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

Agent *i* submits votes $\{a_k^i\}$ and pays $c \sum_k (a_k^i)^2$ c = a parameter can redistribute payment to all others \implies budget-balanced

Let $A_k = \sum_i a_k^i = \text{total votes for option } k$

Pick $k = \arg \max A_k$ (?) Pick $k \sim \mathbf{p}$ randomly where

"soft max"

$$p_k = \frac{e^{A_k}}{e^{A_1} + \dots + e^{A_m}}.$$

⁴Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

Our results on QTM for public projects

Theorem (Monroe and Waggoner (2024))Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k V_k}$. $\epsilon = \text{"influence"}$

Our results on QTM for public projects

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k V_k}$. $\epsilon =$ "influence" For two alternatives, choosing $c = \frac{1}{2}v^*$, the QTM has Price of Anarchy $\ge \max\left\{\frac{1}{2}, 1 - (2\epsilon)^{2/5}\right\}$.

Our results on QTM for public projects

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k V_k}$. $\epsilon =$ "influence" For two alternatives, choosing $c = \frac{1}{2}v^*$, the QTM has Price of Anarchy $\geq \max\left\{\frac{1}{2}, 1 - (2\epsilon)^{2/5}\right\}$.

Notes:

- builds on tools of analogous asymptotic result of Eguia et. al
- 3+ alternatives: $PoA \ge \frac{1}{\# \text{ alternatives}}$; better is open nonasymptotically.

Outline:

- 1 Public Projects from preferences
- 2 Public Projects from predictions
- ³ Public Projects with preferences and predictions

Outline:

Public Projects from preferences Public Projects from predictions

- Prediction markets
- Decision markets

3 Public Projects with preferences and predictions

Prediction markets:

all we need today

Prediction markets:

all we need today

- Want to predict X, e.g. tons of carbon emitted by city in 2025
- Participants have private signals

goal: find Bayesian posterior

Prediction markets:

all we need today

- Want to predict X, e.g. tons of carbon emitted by city in 2025
- Participants have private signals
- Facilitate trading until Dec 31, 2024
 - \implies get consensus prediction (price) X
- On Jan 1, 2026: observe X, settle bets

goal: find Bayesian posterior

based on proper scoring rules

Prediction markets:

all we need today

goal: find Bayesian posterior

based on proper scoring rules

- Want to predict X, e.g. tons of carbon emitted by city in 2025
- Participants have private signals
- Facilitate trading until Dec 31, 2024
 - \implies get consensus prediction (price) X
- On Jan 1, 2026: observe X, settle bets

Ostrovsky (2012): In any equilibrium, all* information is aggregated:

$$\hat{X} = \mathbb{E}[X \mid \mathsf{signals}]$$

Prediction markets:

all we need today

- Want to predict X, e.g. tons of carbon emitted by city in 2025
- Participants have private signals
- Facilitate trading until Dec 31, 2024
 - \implies get consensus prediction (price) X
- On Jan 1, 2026: observe X, settle bets

Ostrovsky (2012): In any equilibrium, all* information is aggregated:

 $\hat{X} = \mathbb{E}[X \mid \mathsf{signals}]$

Alternative: wagering mechanisms

can average the predictions, but aggregation is not guaranteed

goal: find Bayesian posterior

based on proper scoring rules

1 Suppose B_k = welfare impact of k

nonnegative, higher is better

⁵Hanson (1999); Othman and Sandholm (2010)

- **1** Suppose B_k = welfare impact of k nonnegative, higher is better
- **2** Run conditional market for \hat{B}_1 , a separate market for \hat{B}_2, \ldots

⁵Hanson (1999); Othman and Sandholm (2010)

- **1** Suppose B_k = welfare impact of k nonnegative, higher is better
- **2** Run conditional market for \hat{B}_1 , a separate market for \hat{B}_2 , . . .
- 3 Close all betting
- **4** Pick $k = \arg \max_k \hat{B}_k$

⁵Hanson (1999); Othman and Sandholm (2010)

- **1** Suppose B_k = welfare impact of k nonnegative, higher is better
- **2** Run conditional market for \hat{B}_1 , a separate market for \hat{B}_2 , ...
- 3 Close all betting
- **4** Pick $k = \arg \max_k \hat{B}_k$
- **5** Cancel bets in all markets but k; later observe B_k and pay out

⁵Hanson (1999); Othman and Sandholm (2010)

- **1** Suppose B_k = welfare impact of k nonnegative, higher is better
- **2** Run conditional market for \hat{B}_1 , a separate market for \hat{B}_2 , ...
- 3 Close all betting
- 4 Pick $k = \arg \max_k \hat{B}_k$ except, with some probability, mix
- **5** Cancel bets in all markets but k; later observe B_k and pay out

Chen et al. (2010): randomization + importance weighting \implies truthful

⁵Hanson (1999); Othman and Sandholm (2010)

- **1** Suppose B_k = welfare impact of k nonnegative, higher is better
- **2** Run conditional market for \hat{B}_1 , a separate market for \hat{B}_2 , . . .
- 3 Close all betting
- 4 Pick $k = \arg \max_k \hat{B}_k$ except, with some probability, mix
- **5** Cancel bets in all markets but k; later observe B_k and pay out

Chen et al. (2010): randomization + importance weighting \implies truthful

Combine with Ostrovsky (2012): approximately efficient

⁵Hanson (1999); Othman and Sandholm (2010)

Outline:

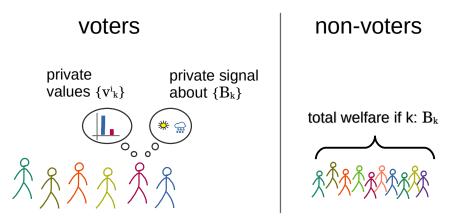
- 1 Public Projects from preferences
- 2 Public Projects from predictions
- **3** Public Projects with preferences and predictions

Outline:

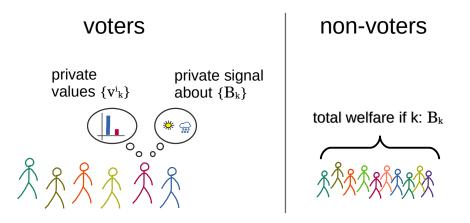
- 1 Public Projects from preferences
- 2 Public Projects from predictions
- **3** Public Projects with preferences and predictions
 - Model
 - Mechanism: SQUAP
 - Results
 - Caveats

Model

voters



non-voters


total welfare if k: B_k

Model

Model

 $W_k := V_k + \mathbb{E}[B_k \mid \text{signals}]$ total welfare of option k

Related work

VCG+scoring rules mechanism of Cai, Mahdian, Mehta, Waggoner (2013)

Related work

VCG+scoring rules mechanism of Cai, Mahdian, Mehta, Waggoner (2013)

- \blacksquare Each i submits valuation $\{v_k^i\}$ and conditional predictions $\{p_k^i\}$
- Compute $\hat{B}_k = g(\{p_k^i\})$ assume g component-wise convex
- Select $k = \arg \max_k \left(V_k + \hat{B}_k \right)$
- Use VCG payments combined with scoring rules constructed from g

Exists fully efficient equilibrium

assuming you know how to aggregate

but PoA = 0inherits VCG weaknesses

Synthetic-Players Quadratic Transfer Mechanism with Predictions (SQUAP):

 For each k, run conditional prediction market to obtain B̂k can also use wagering mechanism

- For each k, run conditional prediction market to obtain B_k can also use wagering mechanism
- Run QTM, but add "synthetic player" with values $(\hat{B}_1, \ldots, \hat{B}_m)$ results in $k \sim p$

- For each k, run conditional prediction market to obtain B_k can also use wagering mechanism
- Run QTM, but add "synthetic player" with values $(\hat{B}_1, \ldots, \hat{B}_m)$ results in $k \sim p$
- Cancel all conditional markets but k

- For each k, run conditional prediction market to obtain B_k can also use wagering mechanism
- Run QTM, but add "synthetic player" with values $(\hat{B}_1, \ldots, \hat{B}_m)$ results in $k \sim p$
- Cancel all conditional markets but k
- Later, observe B_k and pay out k market use importance-weighted payment of Chen et. al (2011)

Theorem (Monroe and Waggoner (2024))

Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k W_k}$.

 $\epsilon =$ "influence"

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k W_k}$. $\epsilon =$ "influence" Assume "markets aggregate information" (A1). For two alternatives, there is a choice of SQUAP parameters s.t. Price of Anarchy $\geq 1 - 2\epsilon - (2\epsilon)^{2/5}$.

Assumption (A1):

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k W_k}$. $\epsilon =$ "influence" Assume "markets aggregate information" (A1). For two alternatives, there is a choice of SQUAP parameters s.t. Price of Anarchy $\geq 1 - 2\epsilon - (2\epsilon)^{2/5}$.

Assumption (A1): market converges to $\mathbb{E}[B_k | \text{signals}]$, then manipulation occurs or: markets aggregate information off the equilibrium path or: nobody has **exclusive** private information

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k W_k}$. $\epsilon =$ "influence" Assume "markets aggregate information" (A1). For two alternatives, there is a choice of SQUAP parameters s.t. Price of Anarchy $\geq 1 - 2\epsilon - (2\epsilon)^{2/5}$.

Key intuitions (manipulation doesn't hurt much):

- Manipulating predictions is more costly than manipulating votes
- Importance weights: manipulation does not improve market payouts

Theorem (Monroe and Waggoner (2024)) Let $v^* = \max_{i,k} v_k^i$ and $\epsilon = \frac{v^*}{\max_k W_k}$. $\epsilon =$ "influence" Assume "markets aggregate information" (A1). For two alternatives, there is a choice of SQUAP parameters s.t. Price of Anarchy $\geq 1 - 2\epsilon - (2\epsilon)^{2/5}$.

Notes:

- Can use revenue of QTM to subsidize prediction market, sometimes result: QTM revenue = Θ("disagreement")
- Can use wagering instead of prediction markets strategically easier, but assume aggregation is possible

The giant caveat

Unfortunately: you can't run SQUAP.

synthetic player needs knowledge of values to find equilibrium

The giant caveat

Unfortunately: you can't run SQUAP.

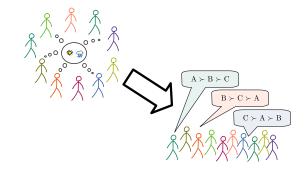
synthetic player needs knowledge of values to find equilibrium

For that matter, can agents play QTM? *just need to respond to vote totals* {*A_k*}, *mean-field style*

Possible solution: run process over time with aim of convergence

Proposed variant: given \hat{B}_1, \hat{B}_2 , collect votes and pick using

$$p_1 = \frac{e^{A_1 + \frac{p_1 p_2}{v^*}(\hat{B}_1 - \hat{B}_2)}}{e^{A_1 + \frac{p_1 p_2}{v^*}(\hat{B}_1 - \hat{B}_2)} + e^{A_2 + \frac{p_1 p_2}{v^*}(\hat{B}_1 - \hat{B}_2)}}.$$


difficult to analyze, involves fixed-point computation

Future work: voters learn their preferences

In our model: Voters had *fixed* preferences.

Ideally: voters adjust preferences in response to aggregated information.⁶

Issue: market manipulation \implies misled voters \implies changed outcome.

⁶See Schoenebeck and Tao (2021)

End

Summary:

- Decisions should aggregate both preferences and information
- Proposed SQUAP, combining prediction markets and quadratic voting
- Proved Price of Anarchy bounds (under impractical assumptions)

Open:

- Analysis of "practical SQUAP"
- Better synthesis of information and preference aggregation
- Role of such mechanisms in a governance structure
- Can organizations avoid capture?

End

Summary:

- Decisions should aggregate both preferences and information
- Proposed SQUAP, combining prediction markets and quadratic voting
- Proved Price of Anarchy bounds (under impractical assumptions)

Open:

- Analysis of "practical SQUAP"
- Better synthesis of information and preference aggregation
- Role of such mechanisms in a governance structure
- Can organizations avoid capture?

Thanks!