Public Projects with Preferences and Predictions

or, "Mixing Auctions and Futarchy"¹

Bo Waggoner University of Colorado, Boulder

Edge Esmeralda June 19, 2024

¹Based on joint work with Mary Monroe. Supported by the Ethereum Foundation.

Intro and background

Governance

Governance

Formal mechanisms for making a group decision

Two paradigms for decision making:

- Information aggregation
- Preference aggregation

Information aggregation

Information aggregation: discussion, consensus, ...

Information aggregation

Information aggregation: discussion, consensus, ...

Common aggregation mechanisms: separate from decisionmaking prediction markets, wagering mechanisms, forecasting competitions, ...

Decision markets:²

We all want to maximize V, some number to be measured one year from now

²Hanson (1999); Othman and Sandholm (2010)

Decision markets:²

- We all want to maximize V, some number to be measured one year from now
- Run a prediction market for $V_{\text{yes}} := "V$ if we adopt the proposal"

²Hanson (1999); Othman and Sandholm (2010)

Decision markets:²

- We all want to maximize V, some number to be measured one year from now
- Run a prediction market for $V_{\text{yes}} := "V$ if we adopt the proposal"
- Simultaneously run a prediction market for V_{no}

²Hanson (1999); Othman and Sandholm (2010)

Decision markets:²

- We all want to maximize V, some number to be measured one year from now
- Run a prediction market for $V_{\text{yes}} := "V$ if we adopt the proposal"
- Simultaneously run a prediction market for V_{no}
- If $V_{yes} > V_{no}$, adopt the proposal
 - Cancel all trades in the "no" market
 - In one year, resolve the "yes" market and pay out

²Hanson (1999); Othman and Sandholm (2010)

Decisions based on preferences

Decisions based on preferences

Two paradigms for preference aggregation:

- Ranked-choice voting (normative, axiomatic)
- Mechanism design (utilitarian)

not a focus today

Example: second-price auction.

decide who gets an item

Example: second-price auction.

decide who gets an item

Assume: each person attaches a number ("utility") to each outcome; try to maximize sum of utilities.

Example: second-price auction.

decide who gets an item

Assume: each person attaches a number ("utility") to each outcome; try to maximize sum of utilities.

Generally assume: utility is interchangeable with money ("quasilinear utility").

Example: second-price auction.

decide who gets an item

Assume: each person attaches a number ("utility") to each outcome; try to maximize sum of utilities.

Generally assume: utility is interchangeable with money ("quasilinear utility").

General example: VCG mechanism.

"Pick the welfare-maximizing choice; charge each person their externality on everyone else."

Can mechanisms aggregate preferences and information?

Can mechanisms aggregate preferences and information?

Hanson (2000; 2007): Futarchy

- Vote on a measure of outcomes (i.e. oracle)
- Run a decision market

Can mechanisms aggregate preferences and information?

Hanson (2000; 2007): Futarchy

- Vote on a measure of outcomes (i.e. oracle)
- Run a decision market
- Schoenebeck and Tao (2021)
 - Hidden state of the world (e.g. proposal is a good/bad idea)
 - Participants have a private signal i.i.d. conditioned on state
 - Participants have a private preference (always adopt, always reject, contingent)
 - Run a "wisdom of the crowd" poll, aggregate and select

Can mechanisms aggregate preferences and information?

Hanson (2000; 2007): Futarchy

- Vote on a measure of outcomes (i.e. oracle)
- Run a decision market
- Schoenebeck and Tao (2021)
 - Hidden state of the world (e.g. proposal is a good/bad idea)
 - Participants have a private signal i.i.d. conditioned on state
 - Participants have a private preference (always adopt, always reject, contingent)
 - Run a "wisdom of the crowd" poll, aggregate and select
- Amanatidis, Birmpas, Lazos, and Marmolejo-Cossío (2022)
 - Motivated by deciding on blockchain protocol updates
 - Experts have beliefs about probability of success of proposal
 - Experts may have ulterior motives
 - Analyzes weighted approval voting

Public Projects with Preferences and Predictions

Mary Monroe and Bo Waggoner, CU Boulder https://arxiv.org/abs/2403.01042

Model: each agent *i* has a value v_k^i for each option *k*

Model: each agent i has a value v_k^i for each option k

• Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$

Model: each agent i has a value \boldsymbol{v}_k^i for each option k

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k^* , assign payments

Model: each agent i has a value \boldsymbol{v}_k^i for each option k

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k^* , assign payments
- Net utility of agent $i: v_{k^*}^i payment$

auasilinear

Model: each agent i has a value v_k^i for each option k

- Welfare of option k: $V_k = \sum_{i=1}^n v_k^i$
- Mechanism: collect reports, pick an alternative k^* , assign payments
- Net utility of agent $i: v_{k^*}^i payment$

Price of Anarchy
$$= rac{\mathbb{E}[V_{k^*}]}{\max_k V_k}$$

in the worst-case equilibrium

quasilinear

• VCG mechanism: Price of Anarchy = 0

but PoStability = 1

• VCG mechanism: Price of Anarchy = 0

but PoStability = 1

- **VCG mechanism:** Price of Anarchy = 0 but PoStability = 1
- All-pay auction: Price of Anarchy $\geq 1 \frac{1}{e} \approx 0.632$

- **VCG mechanism:** Price of Anarchy = 0 but PoStability = 1
- All-pay auction: Price of Anarchy $\geq 1 \frac{1}{e} \approx 0.632$

³Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

- **VCG mechanism:** Price of Anarchy = 0 but PoStability = 1
- All-pay auction: Price of Anarchy $\geq 1 \frac{1}{e} \approx 0.632$
- Quadratic Transfers Mechanism:³ Price of Anarchy $\rightarrow 1$

³Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

- **VCG mechanism:** Price of Anarchy = 0 but PoStability = 1
- All-pay auction: Price of Anarchy $\geq 1 \frac{1}{e} \approx 0.632$
- Quadratic Transfers Mechanism:³ Price of Anarchy $\rightarrow 1$

³Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

- **VCG mechanism:** Price of Anarchy = 0 but PoStability = 1
- All-pay auction: Price of Anarchy $\geq 1 \frac{1}{e} \approx 0.632$
- Quadratic Transfers Mechanism:³ Price of Anarchy ightarrow 1

QTM: agent *i* submits votes a_k^i for or against each option *k*; pays $\sum_k (a_k^i)^2$; mechanism picks $k^* \sim \mathbf{p}$ randomly where

$$p_k = \frac{e^{A_k}}{e^{A_1} + \dots + e^{A_m}}.$$

³Eguia, Immorlica, Ligett, Weyl, Xefteris (2019; 2023).

QTM: example

QTM: example

QTM: example

Goal: incorporate **information aggregation** to group decisionmaking.

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Welfare of option k: $W_k = V_k + B_k$.

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Welfare of option k: $W_k = V_k + B_k$.

Challenges:

- Want to elicit accurate information about $\{B_k\}$...
- ... but voters may wish to manipulate the information aggregation

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Challenges:

- Want to elicit accurate information about $\{B_k\}$...
- ... but voters may wish to manipulate the information aggregation
- ... and predictors may wish to manipulate the decision

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Synthetic-Players Quadratic Transfer Mechanism with Predictions (SQUAP):

Goal: incorporate information aggregation to group decisionmaking.

Model: for each alternative k,

- it has an unknown *external welfare impact* B_k;
- participant i has a self-interested value v_k^i , as before.

Synthetic-Players Quadratic Transfer Mechanism with Predictions (SQUAP):

- **1** Run prediction markets to estimate the future impact of each alternative
- **2** Based on the markets, estimate B_1, \ldots, B_k
- **3** Run QTM with "synthetic players" whose values are B_1, \ldots, B_k synthetic players make no payments
- 4 Cancel/resolve prediction markets, as with decision markets. Use importance-weighted payoff of Chen et. al (2011)

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$

In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$ where the market liquidity parameter is at most $\epsilon \cdot v_{\max}$, $T = W_{\max}/v_{\max}$, QTM payments are scaled by $\frac{1}{2}v_{\max}$, and $v_{\max} = \max_{i,k} v_k^i$. In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$ where the market liquidity parameter is at most $\epsilon \cdot v_{\max}$, $T = W_{\max}/v_{\max}$, QTM payments are scaled by $\frac{1}{2}v_{\max}$, and $v_{\max} = \max_{i,k} v_k^i$. In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

Problem: you can't implement SQUAP.

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$ where the market liquidity parameter is at most $\epsilon \cdot v_{\max}$, $T = W_{\max}/v_{\max}$, QTM payments are scaled by $\frac{1}{2}v_{\max}$, and $v_{\max} = \max_{i,k} v_k^i$. In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

Problem: you can't implement SQUAP. Need to compute the equilibrium.

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$ where the market liquidity parameter is at most $\epsilon \cdot v_{\max}$, $T = W_{\max}/v_{\max}$, QTM payments are scaled by $\frac{1}{2}v_{\max}$, and $v_{\max} = \max_{i,k} v_k^i$. In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

Problem: you can't implement SQUAP. Need to compute the equilibrium. **Proposed solution:** use the mechanism

$$p_1 = \frac{e^{A_1 + \frac{p_1 p_2}{v_{\max}}(B_1 - B_2)}}{e^{A_1 + \frac{p_1 p_2}{v_{\max}}(B_1 - B_2)} + e^{A_2 + \frac{p_1 p_2}{v_{\max}}(B_2 - B_1)}}$$

For 2 outcomes, SQUAP achieves a Price of Anarchy $\geq 1 - \frac{2\sqrt{\epsilon}}{T} - \left(\frac{4}{T}\right)^{2/5}$ where the market liquidity parameter is at most $\epsilon \cdot v_{\max}$, $T = W_{\max}/v_{\max}$, QTM payments are scaled by $\frac{1}{2}v_{\max}$, and $v_{\max} = \max_{i,k} v_k^i$. In other words, Price of Anarchy $\rightarrow 1$ as the total possible welfare grows relative to the largest participant value.

Problem: you can't implement SQUAP. Need to compute the equilibrium. **Proposed solution:** use the mechanism

$$p_1 = \frac{e^{A_1 + \frac{p_1 p_2}{v_{\max}}(B_1 - B_2)}}{e^{A_1 + \frac{p_1 p_2}{v_{\max}}(B_1 - B_2)} + e^{A_2 + \frac{p_1 p_2}{v_{\max}}(B_2 - B_1)}}.$$

Problem: difficult to analyze (involves fixed-point computation).

SQUAP - comments

What's difficult/cool about the theorem:

Voters cannot benefit from manipulating the market predictions. under an efficient market hypothesis

SQUAP - comments

What's difficult/cool about the theorem:

- Voters cannot benefit from manipulating the market predictions. under an efficient market hypothesis
- Predictors cannot benefit by manipulating/casting extra votes. Decision markets must use importance-wtd payoff of Chen et al. (2011)

What's difficult/cool about the theorem:

- Voters cannot benefit from manipulating the market predictions. under an efficient market hypothesis
- Predictors cannot benefit by manipulating/casting extra votes. Decision markets must use importance-wtd payoff of Chen et al. (2011)
- Payments from the voting stage can fund payouts for the prediction market stage.

need "disagreement" in voting stage

What's difficult/cool about the theorem:

- Voters cannot benefit from manipulating the market predictions. under an efficient market hypothesis
- Predictors cannot benefit by manipulating/casting extra votes. Decision markets must use importance-wtd payoff of Chen et al. (2011)
- Payments from the voting stage can fund payouts for the prediction market stage.
 need "disagreement" in voting stage

Future work: analyze the above proposed fix (fixed-point).

Discussion

(I) Information aggregation and preferences

In our model: Voters had *fixed* preferences.

(I) Information aggregation and preferences

In our model: Voters had *fixed* preferences.

Ideal model: voters adjust preferences in response to aggregated information.

(I) Information aggregation and preferences

In our model: Voters had *fixed* preferences.

Ideal model: voters adjust preferences in response to aggregated information.

Challenge: market manipulation \implies misled voters \implies swing in the outcome.

What are the external welfare impacts B_1, \ldots, B_m ?

What are the external welfare impacts B_1, \ldots, B_m ?

Externalities of decision on non-voting parties

What are the external welfare impacts B_1, \ldots, B_m ?

- Externalities of decision on non-voting parties
- Component of mission statement of the organization

What are the external welfare impacts B_1, \ldots, B_m ?

- Externalities of decision on non-voting parties
- Component of mission statement of the organization

Key governance question: how can an organization avoid capture?

What are the external welfare impacts B_1, \ldots, B_m ?

- Externalities of decision on non-voting parties
- Component of mission statement of the organization

Key governance question: how can an organization avoid capture?

Potential answer: decide based on preferences (of members) *and* predictions (about the mission).

End

Summary:

- Decisions aggregate both preferences and information
- Proposed SQUAP, combining prediction markets and quadratic voting
- Proved Price of Anarchy bounds (under impractical assumptions)

End

Summary:

- Decisions aggregate both preferences and information
- Proposed SQUAP, combining prediction markets and quadratic voting
- Proved Price of Anarchy bounds (under impractical assumptions)

Open:

- Analysis of "practical SQUAP"
- Better synthesis of information and preference aggregation
- Role of such mechanisms in a governance structure
- Can organizations avoid capture?

End

Summary:

- Decisions aggregate both preferences and information
- Proposed SQUAP, combining prediction markets and quadratic voting
- Proved Price of Anarchy bounds (under impractical assumptions)

Open:

- Analysis of "practical SQUAP"
- Better synthesis of information and preference aggregation
- Role of such mechanisms in a governance structure
- Can organizations avoid capture?

Thanks!