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Outline

1 Contracts

2 Public projects

3 Matching

Themes

Gathering hidden information

Navigating preferences and strategic behavior

Coordinating good decisionmaking

Solving algorithmic problems in societal contexts
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Contracts

Joint work with Maneesha Papireddygari
The 2022 ACM Conference on Economics and Computation (EC ’22)
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Eliciting predictions

First question: how to elicit a prediction?

An expert makes a prediction p

We observe whether the event happened, y

We assign a score or payment S(p, y)
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Characterization of proper scoring rules

Fact (McCarthy 1956; Savage 1971; . . . )
A scoring rule is proper (meaning truthful) if and only if it is

S(p, y) = G(p) +∇G(p) · (δy − p)

for some convex G.
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Next problem: information acquisition

What if the expert can acquire costly information?

P[ ]=0.9
S (0.9, )

$$

How do we incentivize truthful, accurate predictions?
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Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

Long history in economics
Recent algorithmic work in CS/Econ

work

shirk

Contract  t
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What about both at once?

Final problem: hidden action with information acquisition.
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Overview of problems

passive prediction
proper
scoring
rules

hidden action contract
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Results

Proposition

Any solution to any of the above problems is, without loss of generality,
a proper scoring rule.

Proposition

For any of the above problems, given any target plan, we can construct
an incentive-compatible, optimal scoring rule in polynomial time.

Proposition

For the information acquisition problem, there is a closed-form solution
(an inverted pyramid).
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Connections and takeaways

actions ↔ predictions

value of information

framing contract design as information elicitation
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Public Projects

Joint work with Mary Monroe,
in preparation

Funding: The Ethereum Foundation (2022-)
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Public Projects

A classic problem: a bunch of people want to decide what to do
together.
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A mathematical model. . .

Each person has a value for each alternative

Assume: value is in units of money
Goal: maximize social welfare of project = total value

kitchenette

value

rec room
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Existing solutions

Classical solution: a “VCG mechanism”.

Maximizes welfare, but. . .

Fragile: false-name attacks, . . .

Unpredictable: payments may be zero, very high, in between. . .

No revenue: often, nobody pays anything
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Using quadratic voting

Proposal (Eguia et al. 2022): quadratic-voting-like approach!

Each person casts “votes” for (or against) each option

Pay c times the number of votes, squared c a parameter

Pick the winner with “softmax”:

Pr[select project j] =
etotal votes for j∑
k e

total votes for k
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Prior work

Theorem (Eguia et al. 2022): if participants’ preferences are drawn
i.i.d. with bounded values, then in any symmetric Bayes-Nash
equilibrium,

Pr[select outcome with maximum social welfare]→ 1

as
num. participants→∞.
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Our results

Proposition

With two choices, in any pure-strategy equilibrium,

Social Welfare

Optimal SW
≥ 1−

√
2c

U1 − U2
.

Proposition

A pure-strategy equilibrium exists if c > 3
2 maxi,k |uik|.
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Proof ingredients

analyze Hessian of utility function related: exponential families

fixed-point theorem for concave utilities
properties of xe−x
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Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

Social Welfare

Optimal SW
≥ 1− f(c, U1, . . . , Um)

where we can write down f , but it ain’t pretty.

Conjecture

1 If all participants agree on the ordering of the alternatives, a
pure-strategy equilibrium always exists.

2 In mixed-strategy equil., SW remains high under many conditions.

23 / 38



Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

Social Welfare

Optimal SW
≥ 1− f(c, U1, . . . , Um)

where we can write down f , but it ain’t pretty.

Conjecture

1 If all participants agree on the ordering of the alternatives, a
pure-strategy equilibrium always exists.

2 In mixed-strategy equil., SW remains high under many conditions.

23 / 38



Future work

Explore limits of this mechanism

Explore connections to prediction and decision markets
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Matching

Joint work with Robin Bowers,
to appear in the 2023 Conference on Web and Internet Economics (WINE)

Funding: The National Science Foundation (2023-)
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Matching

Classic problem: how to match e.g. workers to jobs?
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Max-Weight Matching

One formulation: maximize total value of the matching.
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Problem: unknown values

Typically, we initially don’t know our preferences.

We need to spend time, effort, and money to find out.
Reading résumés, market research, interviews, . . .

Model: each person has a distribution over possible values for each job,
and a cost for finding out.

?

?
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Cost: 2
Distribution: F
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Simplified version of the problem

Matching people to items

Selling one item
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The Pandora’s Box Problem

Due to Weitzman (1979) also a case of Gittins index thm.

Optimal “descending policy”:

Compute an index for each alternative.

Inspect from highest index down until we find a large value.

?

?
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Pandora’s Box for auctions

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Idea: mimick the optimal policy with a descending-price auction.

Result: constant-factor approximation to optimal social welfare.

Observation: failure of ascending-price; and of any sealed-bid auction.
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Back to our problem: two-sided matching

Proposal: the Marshallian Match.1

Participants maintain bids on all potential partners.

A global price descends over time.

When the price reaches the total bid on an edge, it matches.

Both sides pay their bids.

1Proposed, but not analyzed, in Waggoner, Weyl (2019).
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Results (1)

Theorem

If all participants’ values are positive,
the Marshallian Match guarantees, in any Bayes-Nash equilibrium,

Social Welfare

Optimal SW
≥ 1

8
.

Holds for model with inspection costs

Also holds for matchings on hypergraphs (group formation)
factor depends on maximum group size
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Some proof ingredients

Ingredient 1: greedy max-weight matching

Ingredient 2: smoothness framework of algorithmic mechanism design

Ingredient 3: Pandora’s analysis ideas from KWW16

Ingredient 4: Rebate variant of Match: align incentives with early
matching

Ingredient 5: Information-hiding allows counterfactual analysis
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Results (2)

Theorem

In general settings with common-knowledge values,
if player strategies are 2-ex-ante stable,
the Marshallian Match guarantees

Social Welfare

Optimal SW
≥ 1

8
.

Ex-ante stability: extension of equilibrium to pairs of players

Proven for model without inspection costs; may extend

Unknown: extends to Bayes-Nash setting? (main open problem)
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Outro

Other exciting work going on in algorithmic economics and
theoretical ML group2: Prof. Raf Frongillo; Ph.D. students Dhamma,
Anish, Maneesha, Rick, Robin, Mary, Melody, Elias; theory group:
Prof. Josh Grochow, Prof. Huck Bennett, students, ....

algorithmic economics theoretical ML

market design

social choice

forecasting

online learning

elicitation

uncertainty &

   decisionmaking

game theory

loss function design

model 
evaluation

high-dimensional prediction

2[JF, RF, BW (COLT 2020, NeurIPS 2021, JMLR 2023)] [RF, BW (NeurIPS 2021)] [RF, AG, AT,
BW (EC 2021)] [DK, RF, BW (ICML 2023)].
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