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Motivation 1: Design of surrogate loss functions

We measure how well an algorithm predicts using a loss function.

Often, natural or popular losses are intractable.

So, we minimize another one – the surrogate.
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Key tool and motivation 2: Information elicitation

A forecaster is asked to make a prediction about a future event.

She is assigned a loss based on the outcome.

She minimizes expected loss.

3 / 22



Key tool and motivation 2: Information elicitation

A forecaster is asked to make a prediction about a future event.

She is assigned a loss based on the outcome.

She minimizes expected loss.

3 / 22



Key tool and motivation 2: Information elicitation

A forecaster is asked to make a prediction about a future event.

She is assigned a loss based on the outcome.

She minimizes expected loss.

3 / 22



Key tool and motivation 2: Information elicitation

A forecaster is asked to make a prediction about a future event.

She is assigned a loss based on the outcome.

She minimizes expected loss.

3 / 22



Key tool and motivation 2: Information elicitation

A forecaster is asked to make a prediction about a future event.

She is assigned a loss based on the outcome.

She minimizes expected loss.

3 / 22



Connection between problems

argmin
r∈R

E
Y∼p

`(r, Y )
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Outline

1 Concepts and definitions from information elicitation
what do you get when you minimize a loss?

2 Surrogate loss functions for machine learning

3 The embedding approach; our contributions
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Part 1: Concepts and definitions from information elicitation

6 / 22



Information elicitation

What do you get when you minimize a loss?

Γ(p) := argmin
r∈R

E
Y∼p

`(r, Y ) (1)

Examples:

`(r, y) = (r − y)2

Γ(p) = EY ∼p Y (mean)

`(r, y) = |r − y| median

`(r, y) =

{
0 r = y

1 otherwise
mode

`(r, y) =?? variance
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Information elicitation

What do you get when you minimize a loss?

Γ(p) := argmin
r∈R

E
Y∼p

`(r, Y ) (1)

Γ : ∆Y → 2R is a property of the distribution p.

Γ is elicitable if there exists ` such that (1) holds.
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Information elicitation - the picture

The simplex ∆Y for Y = {10, 20, 30}:

Pr[20] = 1

Pr[30] = 1Pr[10] = 1
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Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

mean = 20

mean = 25
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Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

variance = 200/3
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Dealing with non-elicitable properties

Indirect elicitation: Elicit some other properties, then compute Γ(p).

Example: elicit variance using mean, second moment.

L((µ1, µ2), y) = (µ1 − y)2 + (µ2 − y2)2.

Elicitation complexity1 of Γ: fewest parameters needed to indirectly elicit Γ.
Variance: 2.

1Frongillo and Kash, 2015.
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Part 2: Surrogate loss functions for machine learning
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Supervised learning setting

Space of features X

Space of outcomes Y
finite, e.g. labels

Data point: (x, y) ∈ X × Y.

Hypothesis h : X → R.

Target loss ` : R×Y → R≥0.

Goal: for a distribution D on X × Y,
find a hypothesis minimizing expected loss:

min
h

E
X,Y∼D

`(h(x), y).

Let px = conditional distribution of Y given X = x.
Bayes optimal: h(x) = γ(px)
where γ is the property elicited by `.
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Why surrogate losses?

Problem 1: wish to learn h : x 7→ γ(px), but γ is not elicitable.

Problem 2: ` is intractable.

Solutions: use a surrogate loss L.

prediction

loss
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What makes a surrogate loss good?

(1) tractability, (2) correct relationship to `.

(1) Tractability of a surrogate loss L : Rd × Y → R≥0

Convex

d is small2

(2) Relationship to `:

Note: need combination of L and link ψ : Rd → R.

Consistency: optimizing L, then applying ψ, leads to optimizing `.

Calibration: if ψ(u) is suboptimal for `, then u is suboptimal for L (for each px).

Our point (new work): it is necessary and almost sufficient for L,ψ to indirectly elicit γ.
Lower bounds, etc.

2convex calibration dimension, Ramaswamy & Agarwal 2016.
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Part 3: The embedding approach; our contributions.
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How do you find a good surrogate?

Suppose R is finite (e.g. classification, ranking, top-k, . . . ).

One idea: embed ` as follows:

For each r ∈ R, choose some ur ∈ Rd.
embedding points

Find a convex surrogate L such that ur ∈ argminL(·; p) if and only if r ∈ argmin `(·; p).

Set ψ(ur) = r for each r.

Choose ψ(u) somehow on the rest of Rd. (L,ψ) is an embedding of `

Problems: when does such an L exist? how to find it?

Theorem

We can automatically, efficiently construct an embedding L of ` from ` using dimensions d = |Y| − 1.

Proof idea: Use the convex conjugate of the Bayes risk of `.
Not really a new construction; e.g. prediction markets!
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Example 1: Mode

On Y = {±1}: hinge loss.

More generally: works!
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Example 2: Classification with abstain

`(r, y) =


1
2 r = abstain

0 r = y

1 otherwise.
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Example 2: Classification with abstain

`(r, y) =


1
2 r = abstain

0 r = y

1 otherwise.

Amazing embedding construction:3 d = dlog2 |Y|e.

3Ramaswamy et al. 2018
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Back to the theorem

Theorem

(Restatement) If ` is a discrete loss, then it has an embedding L.

Furthermore, L is polyhedral.

polyhedral: piecewise-linear and convex.

Theorem

If L is polyhedral, it embeds a discrete loss.
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Not just embedding!

Not yet answered: how to construct ψ outside of embedding points?

Answer: the ε-thickened link ψL,ε.

Theorem

Let L be polyhedral, embedding `. Then there exists ε > 0 such that L,ψL,ε is calibrated for `.

Theorem (Current work)

In fact, there exists ε > 0 and C > 0 such that, for all u and p,

`(ψL,ε(u); p)− `∗(p) ≤ C · (L(u; p)− L∗(p)) .

Implication: Fast rates of convergence of L translate linearly to fast rates for `.
Not generally true for smooth surrogates.
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Summary and some other results

Summary:

Introduced information elicitation and properties Γ

Discussed “good” surrogates L for targets `:

Tractable (convex, dimension d low)
Represents ` correctly (consistent, calibrated, etc)

Results for discrete losses:

Formalized embedding approach; always possible
embeddings ⇐⇒ polyhedral surrogate losses
ε-thickened link =⇒ calibration =⇒ consistency

Other results on tractability:

Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k

Characterization of embeddability for d = 1 (ongoing work)

Techniques for lower bounds on d-embeddability of given ` (ongoing work)

Thanks!
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