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argmin E £(r,Y)

rerR  Y~p
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. Concepts and definitions from information elicitation
what do you get when you minimize a loss?

. Surrogate loss functions for machine learning

. The embedding approach; our contributions
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Part 1: Concepts and definitions from information elicitation
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What do you get when you minimize a loss?

I'(p) := argmin E ¢(r,Y) (1)
reR Y~p

Examples:
= U(r,y) = (r—y)?
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What do you get when you minimize a loss?

I'(p) := argmin E ¢(r,Y) (1)
reR Y~p

" I': Ay — 2R is a property of the distribution p.
= T is elicitable if there exists ¢ such that (1) holds.
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The simplex Ay for Y = {10, 20, 30}:

Pr[20] =1

Pr[10] =1 Pr[30] =1
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If a property is elicitable, then all of its level sets are convex sets.
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If a property is elicitable, then all of its level sets are convex sets.

Pr[20] =1

variance = 200/3

Pr[10] =1 Pr[30] =1
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Indirect elicitation: Elicit some other properties, then compute I'(p).

1Frongillo and Kash, 2015. o2



Indirect elicitation: Elicit some other properties, then compute I'(p).

Example: elicit variance using mean, second moment.

1Frongillo and Kash, 2015.
10/22



Indirect elicitation: Elicit some other properties, then compute I'(p).

Example: elicit variance using mean, second moment.

L((p1, p2),y) = (1 — y)* + (p2 — )%

1Frongillo and Kash, 2015.
10/22



Indirect elicitation: Elicit some other properties, then compute I'(p).

Example: elicit variance using mean, second moment.

L((p1, p2),y) = (1 — y)* + (p2 — )%

Elicitation complexity! of I': fewest parameters needed to indirectly elicit T.
Variance: 2.

1Frongillo and Kash, 2015.
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Part 2: Surrogate loss functions for machine learning
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B Space of features X

B Space of outcomes )
finite, e.g. labels

B Data point: (z,y) € X x ).
® Hypothesis h : X — R.
B Target loss £: R x Y — Rx>p.

Goal: for a distribution D on X x ),
find a hypothesis minimizing expected loss:

min 1IE~D Uh(z),y).

)

Let p, = conditional distribution of Y given X = x.
Bayes optimal: h(z) = vy(p,)
where ~y is the property elicited by .
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Problem 1: wish to learn h : = — 7(p,), but vy is not elicitable.
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loss

prediction
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(1) tractability, (2) correct relationship to ¢.

2convex calibration dimension, Ramaswamy & Agarwal 2016.
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(1) tractability, (2) correct relationship to ¢.

(1) Tractability of a surrogate loss L : R x Y — R>g
B Convex

® d is small?

(2) Relationship to ¢
" Note: need combination of L and link ) : RY — R.
B Consistency: optimizing L, then applying 1, leads to optimizing £.
= Calibration: if ¢(u) is suboptimal for ¢, then w is suboptimal for L (for each p,).

B QOur point (new work): it is necessary and almost sufficient for L, to indirectly elicit ~.
Lower bounds, etc.

2convex calibration dimension, Ramaswamy & Agarwal 2016.
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Part 3: The embedding approach; our contributions.
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Suppose R is finite (e.g. classification, ranking, top-k, ...).

One idea: embed ¢ as follows:

B For each r € R, choose some u, € R®.
embedding points

B Find a convex surrogate L such that u, € argmin L(-;p) if and only if r € argmin £(-; p).
B Set ¢(u,) = r for each r.
¥ Choose 1(u) somehow on the rest of R%. (L,v) is an embedding of ¢

Problems: when does such an L exist? how to find it?

We can automatically, efficiently construct an embedding L of £ from ¢ using dimensions d = |Y| — 1.

Proof idea: Use the convex conjugate of the Bayes risk of /.
Not really a new construction; e.g. prediction markets!
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On Y = {£1}: hinge loss.
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On Y = {£1}: hinge loss.

More generally: works!
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r = abstain

1
2

Ury) =40 r=y
1 otherwise.
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r = abstain

1
2

Ury) =40 r=y
1 otherwise.

Amazing embedding construction:® d = [log, |V|].

3Ramaswamy et al. 2018
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(Restatement) If ¢ is a discrete loss, then it has an embedding L.

Furthermore, L is polyhedral.

polyhedral: piecewise-linear and convex.
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Not yet answered: how to construct v outside of embedding points?

Answer: the e-thickened link ¥, .

Let L be polyhedral, embedding . Then there exists € > 0 such that L,y . is calibrated for £.

In fact, there exists € > 0 and C' > 0 such that, for all w and p,

£(pp.e(u);p) — (p) < C - (L(u;p) — L*(p)) -

Implication: Fast rates of convergence of L translate linearly to fast rates for £.
Not generally true for smooth surrogates.
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21/22



Summary:

¥ Introduced information elicitation and properties I'

22/22



Summary:
¥ Introduced information elicitation and properties I'
® Discussed “good” surrogates L for targets ¢:

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:
m Tractable (convex, dimension d low)

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

B Results for discrete losses:
m Formalized embedding approach; always possible

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

Other results on tractability:

B Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

Other results on tractability:
B Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k
B Characterization of embeddability for d = 1 (ongoing work)

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

Other results on tractability:
B Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k
B Characterization of embeddability for d = 1 (ongoing work)
B Techniques for lower bounds on d-embeddability of given ¢ (ongoing work)

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

Other results on tractability:
B Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k
B Characterization of embeddability for d = 1 (ongoing work)
B Techniques for lower bounds on d-embeddability of given ¢ (ongoing work)

22/22



Summary:
¥ Introduced information elicitation and properties I'

® Discussed “good” surrogates L for targets ¢:

m Tractable (convex, dimension d low)
m Represents ¢ correctly (consistent, calibrated, etc)

¥ Results for discrete losses:

m Formalized embedding approach; always possible
m embeddings <= polyhedral surrogate losses
m e-thickened link = calibration = consistency

Other results on tractability:
B Used elicitation to show inconsistency of proposed losses: Lovasz hinge, top-k
B Characterization of embeddability for d = 1 (ongoing work)
B Techniques for lower bounds on d-embeddability of given ¢ (ongoing work)

Thanks!
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