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Summary

A common task in e.g. natural language processing is to learn a
discrete distribution over a very large domain. But how do we
evaluate a learned distribution q given samples from the truth
p? This paper proposes an axiomatic approach to selecting a loss
function and finds that imposing the requirement of calibration
allows many loss functions to satisfy the axioms.

Setting
True distribution: p ∈ ∆N N exponentially large
Learned distribution: q ∈ ∆N given to us by some algorithm
Loss functions: `(q, x) loss of q on sample x ∈ [N ]
Expected loss: `(q; p) of q on a sample drawn from p
Empirical distribution: p̂ of some set of m samples
Empirical loss: `(q; p̂) average loss of q on the m samples

Log loss: `(q, x) = ln
(1
x

)

Calibration

q is calibrated[1, 2] with respect to p if the domain is partitioned
by S1, . . . , Sk where, for each Si:

(1) q is uniform on Si i.e. q(x) = q(y) for x, y ∈ Si
(2) q(Si) = p(Si) =⇒ average probabilities are equal

probability

1 2 3 4 5 6 7 8 9 10 11 12 13 … N
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p
q

(need not be contiguous in general)

The Axioms

(1) local: `(q, x) depends only on qx. not qx′ for any x′ 6= x

(2) strictly proper: `(q; p) > `(p; p) for all q 6= p.
i.e. true distribution minimizes expected loss

(3) β-strongly proper: If ‖p− q‖1 ≥ ε, then
`(q; p)− `(p; p) ≥ β

2ε
2.

log loss is 1-strongly proper ⇐⇒ Pinsker’s inequality
(4) sample proper: If ‖p− q‖1 ≥ ε, then when drawing

m = poly(1
ε, log(N)) samples, `(q; p̂) > `(p; p̂) w.high prob.

log loss is sample proper (folklore).
(5) concentrating: For any γ > 0, when drawing

m = poly(1
γ, log(N)) samples, |`(q; p̂)− `(q; p)| ≤ γ w.high prob.

log loss does not concentrate!

Key Points

(A) No loss function can satisfy all 5 axioms.
(B) But if we restrict to calibrated distributions q, many losses
satisfy all 5!
(C) We believe restricting to calibrated q is natural and may be
feasible for learning algorithms.

Capturing Properties of Calibration
Lemma 1: If q is calibrated with respect to p, then on any partition
element Si,

E
 1
p(X)

∣∣∣∣∣ X ∈ Si
 = E

 1
q(X)

∣∣∣∣∣ X ∈ Si
 = |Si|

p(Si)
.

Implication: If `(q, x) = f
(

1
qx

)
for (left-strongly) concave f , then

` is (strongly) proper over calibrated q.

Lemma 2: If q is calibrated with respect to p, then for all x,
qx ≥

( 1
N

)
px.

Implication: If `(q, x) = f
(
log( 1

qx
)
)

for left-strongly-concave,
polynomial f , then ` is sample proper and concentrates over cali-
brated q.

Results and Applications
Summary: Prove general conditions under which a loss of the form
`(q, x) = f

(
1
qx

)
, for some f , satisfies axioms (1)-(5). (see “Captur-

ing Properties of Calibration”) Examples: Loss functions such as
`(q, x) = log(log( eqx)),

√
log( 1

qx
),
(
log( 1

qx
)
)2
, etc. satisfy (1)-(5).

Why satisfy the axioms? (Note: The space N may be exponentially
large, e.g. all sentences of ≤ 50 words.)

(1) Can efficiently compute the loss from implicit representations of q.
(2) Classical forecasting axiom: ground truth minimizes expected loss.
(3) Worse predictions have significantly larger expected loss.
(4) Few samples suffice to distinguish correct/incorrect distributions.
(5) Few samples suffice to accurately estimate actual expected loss.

Extensions and appendices:
•Results all extend to approximate calibration.
•One can efficiently post-process a learning algorithm to
approximately calibrate it.

Implications for Practice

•ML currently struggles to rigorously evaluate distributions over
large sample spaces (GANs, NLP applications, . . . ).
•This paper suggests imposing calibration on learning
algorithms and evaluating with loss functions satisfying the
axioms.
•The axioms may explain why log loss is so popular in
practice. . .
• . . . and open up alternatives such as poly(log( 1

qx
)) and more.
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