Toward a Characterization of Loss Functions for Distribution Learning

A common task in e.g. natural language processing is to learn a
discrete distribution over a very large domain. But how do we
evaluate a learned distribution q given samples from the truth

p’! This paper proposes an axiomatic approach to selecting a loss
function and finds that imposing the requirement of calibration
allows many loss functions to satisfy the axioms.

Setting

True distribution: p € Ay N exponentially large
Learned distribution: q € Ay
Loss functions: ¢(q, )
Expected loss: £(q; p)
Empirical distribution: p

Empirical loss: £(q; D)

oiven to us by some algorithm

loss of q on sample x € [N

of q on a sample drawn from p

of some set of m samples

average loss of q on the m samples

Log loss: #(q,z) = In (%)

Calibration

q is calibrated|1, 2| with respect to p if the domain is partitioned
by 51, ..., where, for each \S;:

(1) q is uniform on 5;

(2) q(Si) = p(Si)

ie. q(x) =qy) for z,y € S5,
—> average probabilities are equal
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The Axioms

(1)

(2)

(3)

(4)

(5)

local: /(q, x) depends only on q,. not g, for any =’ # x

strictly proper: /(q;p) > /(p;p) for all q # p.
i.e. true distribution minimizes expected loss

B-strongly proper: If |p — qlli > ¢, then

{(q;p) — {(p;p) > €

log loss is 1-strongly proper <= Pinsker’s inequality
sample proper: If |p — ql|1 > ¢, then when drawing

m = poly(%, log(NV)) samples, £(q;P) > £(p; p) w.high prob.
log loss is sample proper (folklore).

concentrating: For any v > 0, when drawing

m = poly(5,log(N)) samples, |¢(q; p) — £(q; p)| < ~ w.high prob.
log loss does not concentrate!

Key Points

(A) No loss function can satisfy all 5 axioms.

(B) But if we restrict to calibrated distributions q, many losses
satisty all 5!

(C) We believe restricting to calibrated q is natural and may be
feasible for learning algorithms.

Capturing Properties of Calibration

Lemma 1: If q is calibrated with respect to p, then on any partition
element S;,

| 1S
X eS| = :
] P(Sz')

V X eS| =E
P(X) _ q(X)

Implication: If /(q,z) = f (qi) for (left-strongly) concave f, then

i

¢ is (strongly) proper over calibrated q.

Lemma 2: If q is calibrated with respect to p, then for all z,

x> (%) Pa-

Implication: If /(q,x) = f (log(%)) for left-strongly-concave,
polynomial f, then ¢ is sample proper and concentrates over cali-
brated q.
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Results and Applications

(1)
(2)
(3)
(4)
(5)

Summary: Prove general conditions under which a loss of the form
l(q,z) =f (%), for some f, satisfies axioms (1)-(5). (see “Captur-
Examples: Loss functions such as

ing Properties of Calibration”)
2
t(q, z) = log(log(%)), \/log(;), (log(;)) " ete. satisfy (1)-(5).

Why satisfy the axioms? (Note: The space N may be exponentially

large, e.g. all sentences of < 50 words.)

Can efficiently compute the loss from implicit representations of q.
Classical forecasting axiom: ground truth minimizes expected loss.

Worse predictions have significantly larger expected loss.

Few samples suffice to distinguish correct/incorrect distributions.

Few samples suffice to accurately estimate actual expected loss.

Extensions and appendices:

e Results all extend to approximate calibration.

e One can efficiently post-process a learning algorithm to
approximately calibrate it.

Implications for Practice

e ML currently struggles to rigorously evaluate distributions over
large sample spaces (GANs, NLP applications, ... ).

e 'T'his paper suggests imposing calibration on learning
algorithms and evaluating with loss functions satistying the
ax10ms.

e 'The axioms may explain why log loss is so popular in
practice. . .

e ... and open up alternatives such as poly(log(qi)) and more.
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