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argmin
r∈R

E
y∼p

`(r, y)
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argmin
r∈R

E
y1,y2∼p

i.i.d.

`(r, y1, y2)
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argmin
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y1,...,ym∼p
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Outline

1 Background: information elicitation
what do you get when you minimize a loss?

2 Paper 1: Multi-Observation Elicitation (COLT 2017)
what changes with multi-observation losses?

3 Paper 2: Multi-Observation Regression (AISTATS 2019)
what ML problems can they solve?

5 / 33



Background: information elicitation

What do you get when you minimize a loss?

Γ(p) := argmin
r∈R

E
y∼p

`(r, y) (1)

Examples:

`(r, y) = (r − y)2

Γ(p) = Ey∼p y (mean)

`(r, y) = |r − y| median

`(r, y) =

{
0 r = y

1 otherwise
mode

`(r, y) =?? variance
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Background: information elicitation

What do you get when you minimize a loss?

Γ(p) := argmin
r∈R

E
y∼p

`(r, y) (1)

Γ : ∆Y → 2R is a property of the distribution p

Γ is elicitable if there exists ` such that (1) holds
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The variance is not elicitable

Proposition (Folklore)

There is no loss function that elicits the variance of p.
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Information elicitation - the picture

The simplex ∆Y for Y = {10, 20, 30}:

Pr[20] = 1

Pr[30] = 1Pr[10] = 1
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Information elicitation - the picture

A property is a partition of the simplex.

The level set of r is {p : Γ(p) = r}.

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

mode 
= 20

mode 
= 10

mode 
= 30
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Pr[20] = 1
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Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

mean = 20

mean = 25
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Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

variance = 200/3
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Non-elicitable properties

Known: there is no loss function eliciting the variance.
Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate.
=⇒ the elicitation complexity1 of the variance is 2.

Note: always possible to elicit entire distribution and calculate.
=⇒ elicitation complexity ≤ |Y| − 1 for all properties.

1e.g. Frongillo and Kash, 2015
10 / 33



Non-elicitable properties

Known: there is no loss function eliciting the variance.
Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate.
=⇒ the elicitation complexity1 of the variance is 2.

Note: always possible to elicit entire distribution and calculate.
=⇒ elicitation complexity ≤ |Y| − 1 for all properties.

1e.g. Frongillo and Kash, 2015
10 / 33



Non-elicitable properties

Known: there is no loss function eliciting the variance.
Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate.
=⇒ the elicitation complexity1 of the variance is 2.

Note: always possible to elicit entire distribution and calculate.
=⇒ elicitation complexity ≤ |Y| − 1 for all properties.

1e.g. Frongillo and Kash, 2015
10 / 33



Final case study: 2-norm

Consider Γ(p) = ‖p‖2
2 =

∑
y p

2
y. Measures non-uniformity of p

Pr[20] = 1

Pr[30] = 1Pr[10] = 1

2-norm squared
= 0.168

Fact: [Frongillo and Kash, 2015] The elicitation complexity of
the 2-norm is |Y| − 1.
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Paper 1: (im)possibilities

Multi-Observation Elicitation. COLT 2017.
Casalaina-Martin, Frongillo, Morgan, Waggoner.

Goals:

Propose multi-observation losses.

Give upper bounds avoiding prior impossibilities.

Develop theory of losses from algebraic geometry.

Use it to prove lower bounds.

12 / 33
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Example 1: Variance

Claim 1: Let

f(y1, y2) =
1

2
(y1 − y2)2 .

Then Ey1,y2∼p f(y1, y2) = Var(p).

Claim 2: The multi-observation loss function

`(r, y1, y2) =
(
r − f(y1, y2)

)2

elicits the variance of p.
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Example 2: 2-norm

Consider Γ(p) = ‖p‖2
2 =

∑
y p

2
y.

Claim 3: Let
f(y1, y2) = 1 [y1 = y2] .

Then Ey1,y2∼p f(y1, y2) = ‖p‖2
2.

Claim 4: The multi-observation loss function

`(r, y1, y2) =
(
r − f(y1, y2)

)2

elicits the 2-norm squared of p.

14 / 33



Example 2: 2-norm

Consider Γ(p) = ‖p‖2
2 =

∑
y p

2
y.

Claim 3: Let
f(y1, y2) = 1 [y1 = y2] .

Then Ey1,y2∼p f(y1, y2) = ‖p‖2
2.

Claim 4: The multi-observation loss function

`(r, y1, y2) =
(
r − f(y1, y2)

)2

elicits the 2-norm squared of p.

14 / 33



Example 2: 2-norm

Consider Γ(p) = ‖p‖2
2 =

∑
y p

2
y.

Claim 3: Let
f(y1, y2) = 1 [y1 = y2] .

Then Ey1,y2∼p f(y1, y2) = ‖p‖2
2.

Claim 4: The multi-observation loss function

`(r, y1, y2) =
(
r − f(y1, y2)

)2

elicits the 2-norm squared of p.

14 / 33



Wait a minute!

What about the following transformation?

Let p′ = p× p (distributions over i.i.d. pairs).
Then

E
y1,y2∼p

`(r, y1, y2) = E
ȳ∼p′

`(r, ȳ).

So can’t we reduce multi-observation elicitation to standard
elicitation?
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No. . .

tetrahedron = distributions on {0, 1} × {0, 1}
arc = i.i.d. distributions
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. . . but this can provide lower bounds

Proposition

The fourth-central moment is not elicitable with any ≤ 2 observation
loss function.
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Key geometric idea: variance example

Level sets of m-observation elicitable properties can be non-convex. . .
. . . but they must be projections from convex level sets in ∆m

Y .
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Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.
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Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

Example (variance):

{
p :
∑

y pyy
2 −

(∑
y pyy

)2

= 200
3

}
Example (k-norm):

{
p :
∑

y p
k
y = 0.168

}
.
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Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, extremely roughly)

A linear function can’t vanish on a circle.
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Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the
polynomial g vanishes on that level set, and some other conditions
hold, then g has degree at least m.
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Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the
polynomial g vanishes on that level set, and some other conditions
hold, then g has degree at least m.

Corollary

To elicit the k norm requires a k-observation loss.
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Summary and elicitation complexity

Two measures of complexity:

dimensionality: how many parameters need to be elicited?

observations: how many observations used in the loss function?
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Summary and elicitation complexity

Two measures of complexity:

dimensionality: how many parameters need to be elicited?

observations: how many observations used in the loss function?

Nontrivial example: nth central moment is elicitable with
√
n

parameters and
√
n observations.

Best we can do separately: n and n.
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Summary and elicitation complexity

Two measures of complexity:

dimensionality: how many parameters need to be elicited?

observations: how many observations used in the loss function?

Theorem (Key example)

The 2-norm requires |Y| − 1 parameters if using traditional loss
functions, but just one parameter using the multi-observation loss

`(r, y1, y2) =
(
r − 1[y1 = y2]

)2

.
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Paper 2: generalized regression

Multi-Observation Regression. AISTATS 2019.
Frongillo, Mehta, Morgan, Waggoner.

Setup:

Unknown distribution on (x, y) pairs

Draw set of i.i.d. samples

Goal: learn hypothesis f : X → R map x to “summary” of y

Example: map x to expected y

x

y
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Dominant paradigm: ERM

Example: least squares,

argmin
f

∑
(x,y)

(f(x)− y)2

x

y
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Dominant paradigm: ERM

More generally,

argmin
f

∑
x,y

`(f(x), y).

x

y
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Problem: non-elicitable properties!

Given x, we might want to predict. . .

variance of y economics, biology, social science

upper confidence bound on y robust design (engineering)

risk measures finance

2-norm of y economics, biology

. . .

Prior paradigm does not directly apply!

Default solution: Fit a separate model for each parameter.

Problems: may need many parameters; VC-dimension issues. . .
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Potential VC issues
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Fitted variance: old approach
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Solution (?): Multi-observation losses

Proposal: Just fit a multi-observation loss!

min
f

∑
x,y

`(f(x), y1, y2)

Problem?

We only have (x, y) samples, not (x, y1, y2)!
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Fitting multi-observation losses

Clump data into metasamples (x, y1, . . . , ym),
then do empirical risk minimization:

min
f

∑
metasamples

`(f(x), y1, . . . , ym).

x

y
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Theory

Lipschitz assumption: Pr[y | x] changes slowly in x.

Unbiased algorithm:

1 Sample x1, . . . , xn i.i.d. ignore their y’s

2 Draw “enough” fresh (x, y) pairs

3 Use maximum matching to assign ys to nearby original xi.

Theorem (Informal)

With probability 1− δ, for x ∈ [0, 1], we draw Õ(n) samples and

Risk(alg) ≤ Risk(opt) +O (Rademacher complexity) +O

(
1√
n

)
.
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Some proof ideas

1 With high probability, for all but O(
√
n) metasamples

(x, y1, . . . , ym), all yj were sampled “nearby”.
holds for arbitrary distributions

2 “Corrupted samples”.

yj was sampled from a distribution close to Pr[y | x].
View that distribution as a mixture of Pr[y | x] and arbitrary.
With good probability, all yj in metasample came from Pr[y | x].
Only lose O(

√
n) metasamples to bad mixtures.
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Simulations

Setup:

Draw x ∼ U [0, 1]

Draw y = g(x) +N(0, 1)

Goal: fit Var(y | x) answer = 1

Algorithms:

“2mom linear” - fit linear functions to moments

“2mom quad” - fit quadratics to moments

“improved” - our theoretically-rigorous algorithm

our other clustering algorithms
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Observations from simulations

Difficult task:
As expected, default
approaches perform
very poorly.
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Observations from simulations

Easy task:
Multi-observation
approach can still be
a better choice.

30 / 33



Summary

Studied multi-observation losses `(x, y1, . . . , ym)

Elicitation complexity: number of parameters and/or
observations needed

Multiple observations can lower number of parameters needed

Techniques for lower-bounding number of observations needed

Algorithms for metasamples and multi-obs. ERM

Examples with huge improvement in sample complexity
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Future directions (1/2)

Elicitation complexity: more upper and lower bounds
central moments, multiple parameters & observations

Algorithms (or assumptions) in high dimensions
information-theoretic barriers in general

Partner with practitioners → useful applications
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Future directions (2/2)

Multi-Observation Elicitation, COLT 2017.
Multi-Observation Regression, AISTATS 2019.
. . . next in the franchise?
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