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Based on joint work with Rafael Frongillo (U. Colorado, Boulder), Tom Morgan
(Harvard), Sebastian Casalaina-Martin (U. Colorado, Boulder), Nishant Mehta
(U. Victoria).
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1 Background: information elicitation
what do you get when you minimize a loss?

12| Paper 1: Multi-Observation Elicitation (COLT 2017)

what changes with multi-observation losses?

13| Paper 2: Multi-Observation Regression (AISTATS 2019)
what ML problems can they solve?
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What do you get when you minimize a loss?

['(p) := argmin E ((r,y) (1)

reR Y~p

Examples:
= Ury) = (r—y)°
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What do you get when you minimize a loss?

['(p) := argmin E ((r,y) (1)
reR Y~p
Examples:
w U(r,y) = (r —y)? I'(p) =Eypy (mean)
= Ury) =|r—yl median

1 otherwise

" g(ray)z{o teY
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What do you get when you minimize a loss?

['(p) := argmin E ((r,y) (1)
reR Y~p
Examples:
w U(r,y) = (r —y)? I'(p) =Eypy (mean)
= Ury) =|r—yl median
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What do you get when you minimize a loss?

['(p) := argmin E ((r,y) (1)
reR Y~p
Examples:

w U(r,y) = (r —y)? I'(p) =Eypy (mean)

= Ury) =|r—yl median

0 r=y

] £ = d.
(r.y) {1 otherwise meae

w l(ry) =17 variance
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What do you get when you minimize a loss?

['(p) := argmin E ((r,y) (1)

reR Y~p

= I': Ay — 2% is a property of the distribution p
» T is elicitable if there exists ¢ such that (1) holds
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There is no loss function that elicits the variance of p.
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The simplex Ay, for Y = {10, 20, 30}:

Pr[20] =1

Pr[10] =1 Pr[30] =1
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= A property is a partition of the simplex.
= The level set of ris {p: I'(p) = r}.

Pr[20] =1

Pr[10] =1
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= A property is a partition of the simplex.
= The level set of ris {p: I'(p) = r}.

Pr[20] =1

mean =20

mean =25

Pr[10] =1 Pr[30] =1
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If a property is elicitable, then all of its level sets are convex sets.

Pr[20] =1

mean =20

mean = 25

Pr[10] =1 Pr[30] =1
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If a property is elicitable, then all of its level sets are convex sets.

Pr[20] =1

variance = 200/3

Pr[10] =1 Pr[30] =1
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Known: there is no loss function eliciting the variance.
Suggestions?

le.g. Frongillo and Kash, 2015
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Known: there is no loss function eliciting the variance.
Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate.
= the elicitation complexity® of the variance is 2.

Note: always possible to elicit entire distribution and calculate.
— elicitation complexity < |Y| — 1 for all properties.

le.g. Frongillo and Kash, 2015
10/33



Consider T'(p) = ||p|l3 = Zy pz. Measures non-uniformity of p

Pr{20] = 1

2-norm squared
=0.168

Pr{10] =1 ® Pr[30] =1

Fact: [FRONGILLO AND KASH, 2015] The elicitation complexity of
the 2-norm is || — 1.

11/33



Multi-Observation Elicitation. COLT 2017.

Casalaina-Martin, Frongillo, Morgan, Waggoner.
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Multi-Observation Elicitation. COLT 2017.

Casalaina-Martin, Frongillo, Morgan, Waggoner.

Goals:
= Propose multi-observation losses.
= Give upper bounds avoiding prior impossibilities.

Develop theory of losses from algebraic geometry.

Use it to prove lower bounds.
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Claim 1: Let .
f(y17y2) = 5 (yl - y2)2-

Then E,, y,p f(y1,y2) = Var(p).

13/33



Claim 1: Let ]

Jy1,2) = 3 (y1 — y2)°-

Then E,, y,p f(y1,y2) = Var(p).

Claim 2: The multi-observation loss function

Uryn o) = (r— Flyn )’

elicits the variance of p.
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Consider T'(p) = ||p|l3 = Zypfl
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Consider I'(p) = ||p||3 = Zypf,

Claim 3: Let
flyi,y2) =1 [y1 = o) .

Then Eylyy2~p f(yl,yz) = ”p”%
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Consider I'(p) = ||p||3 = Zypf,

Claim 3: Let
f(y17y2) =1 [yl = yz] .

Then Ey17y2~p f(yl,yz) = ”p”%

Claim 4: The multi-observation loss function

O(r,yr, o) = (r — f(y17y2))2

elicits the 2-norm squared of p.
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What about the following transformation?

Let p’ = p x p (distributions over i.i.d. pairs).
Then
E é(?“, Y1, y?) = _]E 6(7,7 g)

Y1,Y2~p gp'

So can’'t we reduce multi-observation elicitation to standard
elicitation?
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tetrahedron = distributions on {0,1} x {0, 1}
arc = i.i.d. distributions

(1,0)

(0.1)

(0,0)

(1.1)
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The fourth-central moment is not elicitable with any < 2 observation
loss function.

PriY=1]
Pri(Y1,Y2)=(1,0)]
0.25

0.2 0.4 0.6 0.8 0 Pritv1.v2)=(1.1)]
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Level sets of m-observation elicitable properties can be non-convex. . .
... but they must be projections from convex level sets in A7},

3 ()

10

T

(b)

00 ’y
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If " is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.
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If " is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

2
Example (variance): {p DDy - (Zypyy) — L;)O}

Example (k-norm): {p DI 0.168}.
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If " is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

A linear function can't vanish on a circle.
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If " is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

If a level set consists of zeros of a degree-m polynomial, and the
polynomial g vanishes on that level set, and some other conditions
hold, then g has degree at least m.
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If " is a m-observation-elicitable and “nice”, then its level sets are all
sets of zeros of some degree-at-most-m polynomial in p.

If a level set consists of zeros of a degree-m polynomial, and the
polynomial g vanishes on that level set, and some other conditions
hold, then g has degree at least m.

To elicit the k norm requires a k-observation loss.
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Two measures of complexity:
= dimensionality: how many parameters need to be elicited?
= observations: how many observations used in the loss function?
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Two measures of complexity:
= dimensionality: how many parameters need to be elicited?
= observations: how many observations used in the loss function?

Nontrivial example: nth central moment is elicitable with \/n

parameters and /n observations.
Best we can do separately: n and n.

20/33



Two measures of complexity:
= dimensionality: how many parameters need to be elicited?
= observations: how many observations used in the loss function?

The 2-norm requires |Y| — 1 parameters if using traditional loss
functions, but just one parameter using the multi-observation loss

Ur,y1,y2) = (r — 1y, = yﬂ)z.
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Multi-Observation Regression. AISTATS 2019.
Frongillo, Mehta, Morgan, Waggoner.
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Multi-Observation Regression. AISTATS 2019.
Frongillo, Mehta, Morgan, Waggoner.

Setup:
= Unknown distribution on (z,y) pairs
® Draw set of i.i.d. samples
® Goal: learn hypothesis f : X - R map x to “summary” of y
= Example: map x to expected y
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Example: least squares,
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More generally,
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Given x, we might want to predict. . .

= variance of y economics, biology, social science
= upper confidence bound on y robust design (engineering)
= risk measures finance
= 2-norm of y economics, biology
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|

Prior paradigm does not directly apply!

Default solution: Fit a separate model for each parameter.
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Given x, we might want to predict. . .

= variance of y economics, biology, social science
= upper confidence bound on y robust design (engineering)
" risk measures finance
= 2-norm of y economics, biology
|

Prior paradigm does not directly apply!
Default solution: Fit a separate model for each parameter.

Problems: may need many parameters; VC-dimension issues. . .
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Mean
Fitted mean
2nd moment
Fitted 2nd

Var(y|x)

--- Fitted variance: old approach
— Variance: new approach/true

1 2 3 @

X
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Proposal: Just fit a multi-observation loss!

i ).

Problem?
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Proposal: Just fit a multi-observation loss!

mmZE ), Y1, Yo)

Problem?

We only have (x,y) samples, not (x,y1,y2)!
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Clump data into metasamples (z, 41, ..., Ym),
then do empirical risk minimization:

min S U@ Ym).

metasamples
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Clump data into metasamples (z, 41, ..., Ym),
then do empirical risk minimization:

min S U@ Ym).

metasamples

y@@@

2
v
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Clump data into metasamples (z, 41, ..., Ym),
then do empirical risk minimization:

min S U@ Ym).

metasamples
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Lipschitz assumption: Pr[y | 2| changes slowly in z.

Unbiased algorithm:
1 Sample 1, ..., x, i.i.d. ignore their y's
12| Draw “enough” fresh (z,y) pairs

3 Use maximum matching to assign ys to nearby original z;.
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Lipschitz assumption: Pr[y | 2] changes slowly in x.

Unbiased algorithm:
1 Sample 1, ..., x, i.i.d. ignore their y's
12 Draw “enough” fresh (x,y) pairs

3 Use maximum matching to assign ys to nearby original z;.

With probability 1 — 6, for z € [0,1], we draw O(n) samples and

1
Risk(alg) < Risk(opt) + O (Rademacher complexity) + O (T) :
n
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11| With high probability, for all but O(y/n) metasamples
(x,y1,...,Ym), all y; were sampled “nearby”.
holds for arbitrary distributions
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"1 With high probability, for all but O(y/n) metasamples
(x,y1,...,Ym), all y; were sampled “nearby”.
holds for arbitrary distributions

2 “Corrupted samples’ .

= y; was sampled from a distribution close to Prly | z].
» View that distribution as a mixture of Pr[y | z] and arbitrary.
= With good probability, all y/; in metasample came from Prly | z].
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"1 With high probability, for all but O(y/n) metasamples
(x,y1,...,Ym), all y; were sampled “nearby”.
holds for arbitrary distributions

] “Corrupted samples”.
= y; was sampled from a distribution close to Prly | z].
» View that distribution as a mixture of Pr[y | z] and arbitrary.
= With good probability, all y/; in metasample came from Prly | z].
= Only lose O(y/n) metasamples to bad mixtures.
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Setup:
» Draw z ~ U[0, 1]
= Draw y = g(z) + N(0,1)
» Goal: fit Var(y | ) answer = 1
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Setup:
» Draw z ~ U[0, 1]
® Draw y = g(z) + N(0,1)
» Goal: fit Var(y | ) answer = 1

Algorithms:
= “2mom linear” - fit linear functions to moments
= “2mom quad” - fit quadratics to moments
= “improved” - our theoretically-rigorous algorithm
= our other clustering algorithms
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Estimating Var(sin(47z) + N(0,1)|z)

0.30
Difficult task: —  2mom linear
As expected, default 5 % —  2mom quad
e — improved
approaches perform 5w — sliding B
- — nearb g
very poorly. E Al
< 0.15)
=
o
0w
C: 0.10
=
[}
8 0.05F
0.00 10 ] S0 W0 10 Mo 160 10200

number of samples
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Estimating Var(2z — 1+ N(0,1)|x)

0.30

Easy task: — 2mom linear

Multi-observation o — 2mom quad
] — improved

approach can still be o —  sliding

a better choice. —— nearby

mearn squar ed error

000, 0 50 i 0 120 o 10 10

80
number of samples
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» Studied multi-observation losses /(x,y1, ..., Ym)
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» Studied multi-observation losses /(x,y1, ..., Ym)

= Elicitation complexity: number of parameters and/or
observations needed

® Multiple observations can lower number of parameters needed
= Techniques for lower-bounding number of observations needed
= Algorithms for metasamples and multi-obs. ERM

= Examples with huge improvement in sample complexity
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= Elicitation complexity: more upper and lower bounds
central moments, multiple parameters & observations

32/33



= Elicitation complexity: more upper and lower bounds
central moments, multiple parameters & observations

= Algorithms (or assumptions) in high dimensions
information-theoretic barriers in general
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= Elicitation complexity: more upper and lower bounds
central moments, multiple parameters & observations

= Algorithms (or assumptions) in high dimensions
information-theoretic barriers in general

= Partner with practitioners — useful applications
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= Multi-Observation Elicitation, COLT 2017.
® Multi-Observation Regression, AISTATS 2019.
= .. next in the franchise?
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= Multi-Observation Elicitation, COLT 2017.
® Multi-Observation Regression, AISTATS 2019.
= .. next in the franchise?

Proceedings of Machine Learning Research vol XX:1-1, 2019

Multi-Observation: Apocalypse

Abstract
No algorithm could have predicted this. ..
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