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2. Some useful extensions [WFA 2015]

3. Axiomatic investigations [FW 2018]
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Basic collaborative framework

e

A collaborative mechanism for crowdsourcing
prediction problems, Abernethy & Frongillo, NIPS 2011

A A

“Scoring Rule Market (SRM)":
1. Designer chooses initial public hypothesis h°

2. Participant t=1,..., proposes public update ht! — ht
3. Validation set D revealed
4. Reward for tis L(h*!, D) - L(h', D)
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Some useful extensions

7

A market framework for eliciting private data, Waggoner,
Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:
1. Designer chooses “feature function” f°

2. Each t=1,..., updates f*1 — f' and pays C(fY) - C(f*1)
3. Validation set revealed
4. Reward for t is ZX,yeDdft(X,y)

Fact (extension of prior results):
Cost function based with RKHS F is equivalent to SRM

with a Bregman divergence-based loss function.
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Axiomatic investigations

f

An axiomatic study of scoring rule markets. Frongillo and
Waggoner, ITCS 2018.

When/why are SRMs (collaborative contests) effective?

Plan:

e Introduce axioms

e Show examples where they are violated
— demonstrate why they're desirable

e Characterize satisfaction of the axioms
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Axioms

f

Define liability: participant’'s worst-case payment.

Bounded trader budget:
Can make updates with arbitrarily small liability.
— market can scale relative to participants

Trade neutralization:

Given a previous update yielding liability d, there exists an
update that yields constant net liability < d.

— can sell the previous contract back for a nontrivial price

Weak neutralization:
Given a previous update yielding liability d, there exists an
update that yields net liability < d.
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Example: categorical classification

[

The wind tomorrow will most likely blow from the:
North?
East?
South?
West?

o (Calm?
Using: 0-1 loss.
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Example: categorical classification

[

Conjecture (B. Dylan, 1965):
“You don’t need a weatherman to know which way the wind
blows.”

4 )
Theorem (Frongillo, Waggoner 2018):
No “scoring-rule market” for categorical
classification can satisfy:

e “Bounded trader budget”

= cannot reach consensus

e nor “(weak) neutralization”.
= participants cannot improve or “cash out”

o J




| It's not all bad
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You don't need a weatherman to know the wind’s velocity

Corrected conjecture:
via a surrogate loss.
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Theorem:
All “scoring-rule markets” for quantiles:

e satisfy “bounded trader budget”
e but not “(weak) neutralization”.
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Theorem:

If a scoring-rule market satisfies “trade neutralization™:

e it can be written as a cost-function based market
e it elicits a (discretized) expectation
i.e. minimizes a Bregman-divergence loss function.
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g
Theorem:

If a scoring-rule market satisfies “trade neutralization”:

e it can be written as a cost-function based market
e it elicits a (discretized) expectation
i.e. minimizes a Bregman-divergence loss function.

.

Theorem:
For any Bregman-divergence loss function (mean), there
exists a cost-function based market satisfying all axioms.




- Other possibilities

Some markets satisfy weak but not strong neutralization!
— Exciting direction for investigation.

Example: ratio of expectations,e.g. EX/EY

e Not cost-function based (no trade neutralization)
e But can be written “almost” as cost function...
... and satisfies weak neutralization!

“Pay”  (Y)(C() - C(fh)
“Reward” 3 fi(X) - f1(X)
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' Takeaways

f

When is the collaborative framework good?

e Parametric form chosen, just need to “buy data”
e Participants with diverse knowledge; non-experts
e Divergence-based losses and means

e (e.g.surrogate losses)

Thanks!







| Other Axioms

e

Incentive compatibility:
Update at each time defines a valid hypothesis;
optimal update is to minimize (some) loss function.

Path independence:
Agents cannot gain by making multiple reports in a row.

FARRARAL LA

Theorem:
IC+PI < “scoring rule markets” (collaborative contests).

cf Abernethy, Chen, Wortman-Vaughan 2013
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