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Outline:

1. Develop definitions of informational substitutes

2. A useful tool and some equivalent definitions

3. (How) is information aggregated in prediction markets?

4. How to acquire information under constraints?
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Intuitive outline for definitions

1. What is the “value” of information?
→ its usefulness in helping make good decisions

2. When are two signals substitutes for a particular 
decision problem?
→ when the marginal value of B decreases
     if we learn (about) A
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Quick example

Signals: stock prices of Apple and Baidu

Decision problem 1: Invest in a tech index fund (y/n)?
→ A and B are substitutes.

Decision problem 2: Invest in Apple or invest in Baidu?
→ A and B are complements.
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Starting point for definitions

What is the “value” of information?
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Starting point for definitions

What is the “value” of information? (Context: decision prob)
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Starting point for definitions

What is the “value” of information? (Context: decision prob)

The utility for observing that information, then acting.

Let V(A) = Ea[ util of optimal decision knowing A=a | A=a].
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Capturing “marginal” information

Given A, suppose A’ is independent conditional on A.

Then A’ contains “strictly less” information (is a “garbling”).

→ we use the relation A > A’  (which forms a lattice)

cf. Blackwell criterion
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The definitions

A and B are substitutes for a given decision problem if:
for all A’ < A,

V(A’,B) - V(A’)  ≥  V(A,B) - V(A)
(and symmetrically for B’ < B.)
“marginal value of B is smaller the more we know of A”

They are complements if:
For all A’ < A,

V(B) - V(∅) ≥  V(A’,B) - V(A’)
(and symmetrically for B’ < B.)
“marginal value of B is larger the more we know of A”
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Recap / big picture

● V(A) = “expected utility to observe A, then act optimally”
in a particular decision problem

● V(B,A) - V(A) = “marginal utility of obtaining B if we will 
already observe A”

● A and B are substitutes if, the more one knows of A, 
the smaller the marginal utility of obtaining B

● A and B are complements if, the more one knows of A, 
the larger the marginal utility of obtaining B
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Key tool: Reduce decisionmaking to prediction

Lemma (“revelation principle”):

For any decision problem, there is a payoff-equivalent 
prediction problem.

In it, the agent is asked to predict E and is paid by a proper 
scoring rule.

14

Nature

u( d , e )



Characterization 1: submodularity

1. Signals are substitutes iff V is a submodular function on 
the signal lattice.
(complements ⇔ supermodular)
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Characterization 2: entropy

2. Each decision problem corresponds to a generalized 
entropy function such that:

A and B are substitutes iff, the more “bits” of information are 
known about A, the fewer “bits” are revealed by B.

(complements ⇔ more bits of A, more bits of B)
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Characterization 3: distance

2. Each decision problem corresponds to a generalized 
divergence (“distance”) function.

Consider the distance our belief moves when learning B
(i.e. by Bayesian updating on B).
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Characterization 3: distance

2. Each decision problem corresponds to a generalized 
divergence (“distance”) function.

Consider the distance our belief moves when learning B
(i.e. by Bayesian updating on B).

A and B are substitutes iff, the more is known about A, the 
smaller the distance our beliefs move when updating on B.

(complements ⇔ more info about A, larger distance)

Note: log scoring rule = Shannon entropy, KL-divergence

18



Outline:

1. Develop definitions of informational substitutes

2. A useful tool and some equivalent definitions

3. (How) is information aggregated in prediction markets?

4. How to acquire information under constraints?

19



Prediction Markets

Prediction market: toy model of financial markets.

There are “securities” tied to future events (e.g. elections).
When the event occurs, shares of the security pay off.
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Prediction Markets

Prediction market: toy model of financial markets.

There are “securities” tied to future events (e.g. elections).
When the event occurs, shares of the security pay off.
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Prediction Markets

Prediction market: toy model of financial markets.

There are “securities” tied to future events (e.g. elections).
When the event occurs, shares of the security pay off.
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Efficient Market Hypothesis

Is information about events aggregated in markets?

Fama (1970), Kyle (1985), ….

Ostrovsky (2013): Information is always aggregated in markets.

OK, but how?
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Known results in prediction markets

For the log scoring rule:
● conditionally indep signals ⇒ immediately aggregated.

(Chen, Dimitrov, Sami, Reeves, Pennock, Hanson, Fortnow, and Gonen 2010)

● unconditionally indep signals ⇒ not aggregated
until the last possible moment.
(Gao, Zhang, Chen 2013)
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Our results

For any scoring rule and any information structure:

1. Information is immediately aggregated if and only if 
traders’ signals are substitutes.

2. Information is not aggregated until the last possible 
moment if and only if traders’ signals are complements.
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Ideas

Main ideas are very intuitive.

→ Key point: In equilibrium, nobody is deceived!
(they are only under-informed. You cannot bluff in equilibrium.)
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Ideas

Main ideas are very intuitive.

→ Key point: In equilibrium, nobody is deceived!
(they are only under-informed. You cannot bluff in equilibrium.)

→ Hence, the problem is all about how much information to
reveal and when to reveal it.

→ Markets reward you (essentially) in proportion to the amount
of information you reveal at a given time.
(Recall entropy characterization.…)
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(Approximately) optimal information acquisition

Input:
● a decision problem u(d,e)
● description of signals A, B, … with prices πA, πB, … 
● Budget B

Output:
● A set of signals to purchase to maximize expected utility
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(Approximately) optimal information acquisition

Results:

If signals are substitutes, there exists a 1-1/e approximation 
algorithm (via reduction to submodular maximization).

In the general case, the problem is as hard as general set 
function maximization (via a reverse reduction).
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(Approximately) optimal information acquisition

Ideas:

(1) if signals are substitutes, we can implement a 
submodular value oracle.

(2) given a general set function, we can construct a 
matching information structure and decision problem.

PS. this works for all kinds of constraints,
e.g. matroid constraints etc.

PPS. issues of representation size come up.
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Recap and Conclusion
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Conclusion

We:

1. developed definitions of informational substitutes and 
informational complements.

“substitutes = diminishing marginal value of information”
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Conclusion

We:

2. saw some equivalent definitions
(submodularity, entropy, distance).
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Conclusion

We:

3. saw that substitutes (complements) characterize
best-case (worst-case) information aggregation in
prediction markets
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Conclusion

We:

4. saw that substitutes imply efficient algorithms for
information acquisition problems
(which are hard in general)
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Thanks!
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