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A glaring omission in mechanism design

Standard model:

- neighborhood: good
- flooring: excellent

- cabinets: old
- ISP: Comcast

value: 8

fully-informed bidders

More realistic:

- neighborhood: ?7?
- flooring: ??

- cabinets: ??

- ISP: ?7?

bidders must invest effort
to learn values



Inspection costs could matter a lot:

e Dbuying a house

e acquiring a startup

Problem: how to get good welfare?

e You'd hope traditional mechanisms would be robust with inspection costs



Traditional economics approaches for welfare

Since Vickrey 1961: prefer “progressive” procedures.

1. Begin with all potential matches.
2. Gradually discard low-value matches.
3. Eventually make high-value matches.

Examples:
e Ascending-price / second-price auctions

e Deferred acceptance
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2. Gradually discard low-value matches.
3. Eventually make high-value matches.

Examples:
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e Deferred acceptance

Problems (intuitively):
e Agents must decide whether to inspect early.

e Bidder inspection may be poorly coordinated.



Our general theme

With inspection costs, mechanisms for assignment should:
1. Begin with no potential matches (high value threshold).
2. Allow bidders to search for highest-value matches first.
3. As soon as a match is found, lock it in.

Why (intuitively):

1. Allow bidders to search without exposure to risk.
2. Coordinate search from highest “potential value” down.



Contributions

1.

Simultaneous/ascending formats are highly suboptimal
(unbounded price of anarchy) with inspection costs.

On the other hand, descending-price correctly coordinates
bidder search.

Combining optimal search theory with auction theory
= tight correspondence to the setting without inspection.
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Outline of talk

e Formal model
e The optimal search procedure
e Descending-price reduction and results

e List of extensions



Formal model

Each j initially draws private cost C, and type ej (agents may be correlated).
At any time, | may inspect, paying G, and drawing v~ Fej independently.

Inspection is:
e instantaneous,
e unobservable,
e mandatory upon obtaining the item.

ﬁ E Cost of inspection: c, C, C,
Value:
F91 F62 F93



Formal model

Our goal: a mechanism with good welfare.

welfare = (value of winner) - (sum of all inspection costs invested)

e.g. v,-C, -C,

Cost of inspection:

Value:




The Optimal Algorithm

With non-strategic bidders, solved by Weitzman (1979).

Our analysis based on Gittins index theory
(Gittins 1970s; Weber 1992).
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A thought experiment for bidder |

Imagine: when | inspects, an investor pays the inspection cost. % ﬁ
But: j can only keep a “capped” amount of the value; repays excess. $

Suppose | claims above the cap: always acquires if she sees v, > cap.
Then investor gets E[ (vj - “cap”)’].
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Deriving OPT

[Key Lemma: welfare(j) < E[ 1jacq K ] with equality if j claims above the cap. 1

[Corollary 1: welfare(OPT) <= E| max; K, ]. ]

Corollary 2: Always allocating to argmax; K, is optimal...

...If all bidders claim above the cap.

t.]



The optimal algorithm

1. Start a descending “clock™ at infinity. Clock

2. When it reaches the highest fair cap,
that bidder inspects.

fair cap,

fair cap,
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1. Start a descending “clock” at infinity. Clock
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The optimal algorithm

1. Start a descending “clock” at infinity. Clock
2. When it reaches the highest fair cap,
that bidder inspects.
If her value = fair cap, allocate to her. Else, continue.
3. As soon as any observed value exceeds the clock,
allocate to that bidder. Ay
1
Check: bidders always claim above the cap, i
air cap,

allocated to highest K;.
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From Algorithm to Mechanism

_ _ price
Descending-price:

e Global descending price starting from infinity.

e At any time, any bidder may claim the item,
ending the auction and paying the current price.

S SR R




Main results: reduction to classic first-price

Theorem: The best-response “claim time” and welfare of: A
e a bidder with capped value k, and
e a bidder with zero inspection cost and value equal to kK
\ are identical. Furthermore, bidders claim above the cap. Y.




Main results: reduction to classic first-price

Theorem: The best-response “claim time” and welfare of: A

e a bidder with capped value k, and
e a bidder with zero inspection cost and value equal to kK

\ are identical. Furthermore, bidders claim above the cap. Y.

/Corollaries: N
e Equilibria are in one-to-one correspondence with first-price
e ¢/(e-1) price of anarchy
e optimal welfare when bidders are “symmetric”

N e ... any other property of first-price auctions. )

In other words: the Dutch auction is invariant to inspection costs.

Why?  Bidders claim above the cap;
can act as though funded by an investor.
— Minimizes exposure to risk.



Extension: multi-item assignment

Multi-item, unit demand setting:
e Global descending clock; claim any item any time.

e Welfare >=0.43 * opt.

(note: Gittins fails! 0.5+¢ in polytime unknown)

e \We don’t know if bidders claim above the cap,

but they have a smoothness deviation that does. Q@

~
Recall: Vickrey fails even with a single item!
Key principles the same:
e Coordinate search from high to low
(across items and bidders).

e Minimize exposure to risk.




Other extensions

e Multiple stages of inspection (no loss in welfare!).

e Sequential posted-price also achieves a constant factor %
under independence (using prophet inequality).

e Common values.
e Revenue guarantee.
e Approximate best-responses.

Key theme: if bidders claim above the cap,
analysis essentially reduces to standard setting.




Other extensions

e Multiple stages of inspection (no loss in welfare!).

e Sequential posted-price also achieves a constant factor %
under independence (using prophet inequality).

e Common values.
e Revenue guarantee.
e Approximate best-responses.

Key theme: if bidders claim above the cap,
analysis essentially reduces to standard setting.
Thanks! Ei (\@ Q@




Excess slides



Some notes on the fair cap

1. The fair cap measures the “potential value” of each bidder. Clock

2. Explore “high-risk, high-reward” options first.

<« faircap _

value pdf = cost

1




