Descending Price Optimally Coordinates Search

Robert Kleinberg.....Cornell / Microsoft Bo Waggoner.....Harvard → UPenn Glen Weyl.....Microsoft / Yale

A glaring omission in mechanism design

fully-informed bidders

bidders must **invest effort** to learn values

Inspection costs could matter a lot:

• buying a house

• acquiring a startup

Problem: how to get good welfare?

• You'd hope traditional mechanisms would be **robust** with inspection costs

Since Vickrey 1961: prefer "progressive" procedures.

- 1. Begin with all potential matches.
- 2. Gradually discard low-value matches.
- 3. Eventually make high-value matches.

Examples:

- Ascending-price / second-price auctions
- Deferred acceptance

Since Vickrey 1961: prefer "progressive" procedures.

- 1. Begin with all potential matches.
- 2. Gradually discard low-value matches.
- 3. Eventually make high-value matches.

Examples:

- Ascending-price / second-price auctions
- Deferred acceptance

Problems (intuitively):

- Agents must decide whether to inspect early.
- Bidder inspection may be **poorly coordinated.**

With inspection costs, mechanisms for assignment should:

- 1. Begin with **no** potential matches (high value threshold).
- 2. Allow bidders to search for highest-value matches first.
- 3. As soon as a match is found, lock it in.

Why (intuitively):

- 1. Allow bidders to search without exposure to risk.
- 2. Coordinate search from highest "potential value" down.

Contributions

- 1. Simultaneous/ascending formats are **highly suboptimal** (unbounded price of anarchy) with inspection costs.
- 2. On the other hand, **descending-price** correctly coordinates bidder search.
- 3. Combining **optimal search theory** with **auction theory** \Rightarrow tight correspondence to the setting without inspection.

Outline of talk

- Formal model
- The optimal search procedure
- Descending-price reduction and results
- List of extensions

Formal model

Each j initially draws private cost c_i and type θ_i (agents may be correlated).

At any time, j may inspect, paying c_i and drawing $v_i \sim F_{\theta i}$ independently.

Inspection is:

- instantaneous,
- unobservable,
- mandatory upon obtaining the item.

Formal model

Our goal: a mechanism with good welfare.

welfare = (value of winner) - (sum of all inspection costs invested)

e.g. $V_1 - C_1 - C_3$

With non-strategic bidders, solved by Weitzman (1979).

Our analysis based on Gittins index theory (**Gittins 1970s**; **Weber 1992**).

Imagine: when j inspects, an **investor** pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j **claims above the cap:** always acquires if she sees $v_j > cap$. Then investor gets E[$(v_j - "cap")^+$].

Imagine: when j inspects, an **investor** pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j **claims above the cap:** always acquires if she sees $v_j > cap$. Then investor gets E[$(v_j - "cap")^+$].

Fair cap: $E[(v_j - "cap")^+] = c_j$. Let $\kappa_i := min(v_i, fair cap)$ be j's **capped value**.

Imagine: when j inspects, an **investor** pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j **claims above the cap:** always acquires if she sees $v_j > cap$. Then investor gets E[$(v_j - "cap")^+$].

Ø

```
Fair cap: E[(v_j - "cap")^+] = c_j.
Let \kappa_i := min(v_i, fair cap) be j's capped value.
```

In this imaginary scenario:

• welfare(j) = $1_i^{acq} \kappa_i$ (because j pays 0 cost and gets k_i for item)

Imagine: when j inspects, an investor pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j claims above the cap: always acquires if she sees $v_i > cap$. Then investor gets $E[(v_i - "cap")^+]$.

```
Fair cap: E[(v_i - "cap")^+] = c_i.
Let \kappa_i := \min(v_i, \text{ fair cap}) be j's capped value.
```

In this imaginary scenario:

- welfare(j) = $1_i^{acq} \kappa_i$ (because j pays 0 cost and gets k_i for item)
- welfare(j) = reality (if j claims above the cap)

Imagine: when j inspects, an investor pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j claims above the cap: always acquires if she sees $v_i > cap$. Then investor gets $E[(v_i - "cap")^+]$.

```
Fair cap: E[(v_i - "cap")^+] = c_i.
Let \kappa_i := \min(v_i, \text{ fair cap}) be j's capped value.
```

In this imaginary scenario:

- welfare(j) = $1_i^{acq} \kappa_i$
- welfare(j) \geq reality (otherwise).
- (because j pays 0 cost and gets k_i for item)
- welfare(j) = reality (if j claims above the cap)

Imagine: when j inspects, an **investor** pays the inspection cost. But: j can only keep a "capped" amount of the value; repays excess.

Suppose j **claims above the cap:** always acquires if she sees $v_j > cap$. Then investor gets E[$(v_j - "cap")^+$].

Fair cap: E[$(v_j - "cap")^+$] = c_j . Let $\kappa_i := min(v_i, fair cap)$ be j's **capped value**.

In this imaginary scenario:

- welfare(j) = $1_i^{acq} \kappa_i$ (because j pays 0 cost and gets k_i for item)
- welfare(j) = reality (if j claims above the cap)
- welfare(j) \geq reality (otherwise).

(otherwise).

Key Lemma: welfare(j) $\leq E[1_i^{acq} \kappa_i]$ with equality if j claims above the cap.

Deriving OPT

Key Lemma: welfare(j) $\leq E[1_i^{acq} \kappa_i]$ with equality if j claims above the cap.

Corollary 1: welfare(OPT) <= E[max_i κ_i].

Corollary 2: Always allocating to $\operatorname{argmax}_{i} \kappa_{i}$ is optimal...

... if all bidders claim above the cap.

Clock Start a descending "clock" at infinity. 1. When it reaches the highest fair cap, 2. that bidder inspects. fair cap₁ fair cap₃ fair cap₂ C_2 C₁ C_3 F₀₂ F_{θ^1} $\mathsf{F}_{_{\theta3}}$

C₁

V₁

- 1. Start a descending "clock" at infinity.
- When it reaches the highest fair cap, that bidder inspects.
 If her value ≥ fair cap, allocate to her. Else, continue.

C₂

 $\mathsf{F}_{_{\theta 2}}$

- 1. Start a descending "clock" at infinity.
- When it reaches the highest fair cap, that bidder inspects.
 If her value ≥ fair cap, allocate to her. Else, continue.
- 3. As soon as any observed value exceeds the clock, allocate to that bidder.

- 1. Start a descending "clock" at infinity.
- When it reaches the highest fair cap, that bidder inspects.
 If her value ≥ fair cap, allocate to her. Else, continue.

Clock

fair cap

V₃

C²

3. As soon as any observed value exceeds the clock, allocate to that bidder.

 C_2

F₀₂

Check: bidders always claim above the cap, allocated to highest κ_{i} .

C₁

From Algorithm to Mechanism

price

Descending-price:

- Global descending price starting from infinity.
- At any time, any bidder may claim the item, ending the auction and paying the current price.

Main results: reduction to classic first-price

Theorem: The best-response "claim time" and welfare of:

• a bidder with capped value κ, and

• a bidder with zero inspection cost and value equal to κ **are identical**. Furthermore, bidders claim above the cap.

Main results: reduction to classic first-price

Theorem: The best-response "claim time" and welfare of:

a bidder with capped value κ, and

• a bidder with zero inspection cost and value equal to κ **are identical**. Furthermore, bidders claim above the cap.

Corollaries:

- Equilibria are in one-to-one correspondence with first-price
- e/(e-1) price of anarchy
- optimal welfare when bidders are "symmetric"
- ... any other property of first-price auctions.

In other words: the Dutch auction is invariant to inspection costs.

- Why? Bidders claim above the cap; can act as though funded by an investor.
 - \rightarrow Minimizes exposure to risk.

Extension: multi-item assignment

Multi-item, unit demand setting:

- Global descending clock; claim any item any time. 9
- Welfare >= 0.43 * opt. (note: Gittins fails! 0.5+ε in polytime unknown)
- We don't know if bidders claim above the cap, but they have a smoothness deviation that does.

Recall: Vickrey fails even with a single item! Key principles the same:

- Coordinate search from high to low (across items and bidders).
- Minimize exposure to risk.

Other extensions

- Multiple **stages** of inspection (no loss in welfare!).
- Sequential posted-price also achieves a constant factor under independence (using prophet inequality).
- Common values.
- Revenue guarantee.
- Approximate best-responses.

Key theme: if bidders claim above the cap, analysis essentially reduces to standard setting.

Other extensions

- Multiple **stages** of inspection (no loss in welfare!).
- Sequential posted-price also achieves a constant factor under independence (using prophet inequality).
- Common values.
- Revenue guarantee.
- Approximate best-responses.

Key theme: if bidders claim above the cap, analysis essentially reduces to standard setting.

Thanks!

Excess slides

Some notes on the fair cap

- 1. The fair cap measures the "potential value" of each bidder.
- 2. Explore "high-risk, high-reward" options first.

F_A

Clock