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Motivation: Daily Deals
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Drawing not to scale
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single page/email
selected at beginning of day
and shown to all users
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Twist: care about users’ welfare
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Really Simple Model

• One winning deal

• One user

Merchants Platform User



Prologue: Standard auction setting

Merchants Platform

v1

v1

v3

v2

User

vi = value for winning
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Simple model for daily deals

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

vi = value for winning
pi = probability of click

• User welfare is related to pi

• First try: require pi to exceed “quality” 
threshold

• Fails! (cannot even get constant factor of vi )



Maximizing total welfare

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

• User welfare is related to pi

• Model relationship by a function g(pi )

• Goal: maximize vi + g(pi )

welfare = g(pi )vi = value for winning
pi = probability of click



Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .
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What does convex mean?
Example: p = 0 on first day, p = 1 on second day
is preferred to p = 0.5 on both days

g(p)
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2. Pick bidder 1.

3. Bidder 1 pays platform: v2 + g(p2 )

4. Platform pays bidder 1: Score(p1 , outcome)
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proper scoring rule with expected score g(p) for truthfully 
reporting p.
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Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

1. Sort by  vi + g(pi ) from highest to lowest.

2. Pick bidder 1.

3. Bidder 1 pays platform: v2 + g(p2 )

4. Platform pays bidder 1: Score(p1 , outcome)

E[utility for winning] = v1 + g(p1)   -   (v2 + 
g(p2))
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Takeaways from simple model

Bidders Auctioneer

Third party

max welfare, including 
externality on

Auction:
2nd price and “decomposed” 
proper scoring rule
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Example: “full” daily deals.
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Example: “full” daily deals.

vi(A1)
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mechanism
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Beliefs conditioned 
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$$$

$$

$Externality: gA2(p1(A2), …, 
pn(A2)) 



Q: For what externality functions g 
can we truthfully max welfare?
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Theorem 2.
gA(p1(A),...) are convex in each argument  we ⇔
can maximize welfare = gA(p1(A),...) + sumi vi(A).



Q: For what externality functions g 
can we truthfully max welfare?

$$$$

$$$
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Auction: VCG and carefully constructed scoring rules.

Theorem 2.
gA(p1(A),...) are convex in each argument  we ⇔
can maximize welfare = gA(p1(A),...) + sumi vi(A).
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Application of Characterization: 
Network Problems

• Each edge has:
– cost vi
– stochastic delay ~ pi

• Utility of traveler: g(p1, …, pm ) for path 1…m

• Goal: maximize total welfare

s t



General takeaways

Bidders Auctioneer

Third party

● Welfare includes externality on
● … depending on private predictions of bidders
● Implementable  externality is convex function of ⇔

prediction
● Auction = VCG + “decomposed” scoring rules



Future work

• Practicality

• Assumptions to avoid negative results

• Applications

• Revenue maximization

• Explore: convexity, implementable allocation functions, 

and implementable objective functions.  c.f. Frongillo and 
Kash, General Truthfulness Characterizations via Convex Analysis

$$$$

$$$

$$

$



Extension: Principal-agent problems

• Each worker has a set of efforts, each with:
– cost
– stochastic quality

• Externality: observed quality of work

• Goal: maximize total welfare
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Motivation: Daily Deals

Daily deals sites are coupon aggregators.



Problem statement

Merchants Platform

“deals” (e.g. coupons)

Drawing not to scale

Users

may “click” on deals
single page/email
selected at beginning of day
and shown to all users

Merchants have deals (coupons) they want to offer users.
The platform, at beginning of the day, must select a single subset of deals to display 

on a website or send in a mass email to all users.
Users arrive, and obtain the deal in some fashion, and we just call this a click. 

Crucially, the platform observes this decision.
The goal is to automate the procedure of selecting deals with some sort of 

mechanism.



Problem statement

Merchants Platform

Drawing not to scale

Users

Task: design an auction to pick deals
Twist: care about users’ welfare
Challenge: merchants know value to users; platform may not

Whereas a standard auction only would concern the merchants and platform, here 
we want to pick deals that have good utility for the users; if the merchants have 
high values but the deals are terrible, users won’t come back and the platform will 
fail.

Challenge in our setting: care about users, but impact on users is private information 
of merchants (many reasons, for example we’ve never seen this deal before 
today and have to make a final decision before we see its performance).

For instance, if you’re familiar with ad auctions, in those models the platform has all 
information about the “quality” of the bidders, but here we want to understand 
what is possible with the opposite information asymmetry: bidders are completely 
informed and auctioneer is not.
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Really Simple Model

• One winning deal

• One user

Merchants Platform User



Prologue: Standard auction setting

Merchants Platform

v1

v1

v3

v2

User

vi = value for winning

Standard auction model, each merchant has as private information a scalar vi, the 
value for winning the slot.



Simple model for daily deals

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

vi = value for winning
pi = probability of click

Now, merchants also have a parameter p, also private info, which is the probability 
that the user clicks on the deal.

v still = valuation for winning slot (hasn’t changed!).
Of course, v and p can be related in some arbitrary way; doesn’t matter to us, just 

two fixed parameters known to the merchant with these well-defined meanings.
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Simple model for daily deals

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

vi = value for winning
pi = probability of click

• User welfare is related to pi

• First try: require pi to exceed “quality” 
threshold

• Fails! (cannot even get constant factor of vi )

See the paper for the exact result, but the takeaway is that it seems hard to run a 
good auction by imposing any sort of threshold on pi (even a relatively soft one).



Maximizing total welfare

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

• User welfare is related to pi

• Model relationship by a function g(pi )

• Goal: maximize vi + g(pi )

welfare = g(pi )vi = value for winning
pi = probability of click

Bidders impact social welfare by both value and by their impact on the user; let’s 
model this impact with a function g, thought of as “externality” on user, and now 
total welfare is v + g(p).
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Theorem 1. g(p) is convex  there exists a ⇔
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Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

What does convex mean?
Example: p = 0 on first day, p = 1 on second day
is preferred to p = 0.5 on both days

g(p)

p 1

I claim that convex functions g(p) intuitively correspond to risk aversion (even though 
we are used to associating risk-aversion with concave functions, which are 
functions of wealth!).

The reason: We’d rather take something for certain than a lottery with same 
expectation. In this case, the user would prefer to click on exactly one deal out of 
the two days than face some lotteries with one click in expectation.

In general, you might think of g(p) as the “certainty equivalent” function for a lottery p; 
it is known that a convex g(p) corresponds to a concave utility function, i.e. 
risk-aversion.



Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Constructing the auction
Key idea: pi = prediction

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 
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Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Scoring rule: Score(prediction, outcome).
Proper: truthful prediction maximizes expected score.

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

Constructing the auction
Key idea: pi = prediction

Example scoring rule: The log scoring rule.
Score(p, yes) = log(p).
Score(p, no)  = log(1-p).
(Can be shifted/multiplied by a constant, of course!)
Of course, we can’t simply apply scoring rules and auctions separately; we need to 

carefully combine them.



Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

1. Sort by  vi + g(pi ) from highest to lowest.

2. Pick bidder 1.
3. Bidder 1 pays platform: v2 + g(p2 )

4. Platform pays bidder 1: Score(p1 , outcome)

Here’s the mechanism; the question is, which scoring rule do we pick for Step 4? It 
must be chosen carefully!



Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Lemma (Savage ’71). For all convex g(p), there exists a 
proper scoring rule with expected score g(p) for truthfully 
reporting p.

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

Example: For the log scoring rule,
g(p) = p log(p) + (1-p)log(1-p), i.e. the entropy function.
Note that this is convex in p and is equal to the expected score of an agent with belief 

p who reports truthfully.



Q: For what user welfare functions 
g(p) can we truthfully max welfare?

Theorem 1. g(p) is convex  there exists a ⇔
deterministic, truthful auction maximizing 

vi + g(pi ) .

1. Sort by  vi + g(pi ) from highest to lowest.

2. Pick bidder 1.
3. Bidder 1 pays platform: v2 + g(p2 )

4. Platform pays bidder 1: Score(p1 , outcome)

E[utility for winning] = v1 + g(p1)   -   (v2 + 
g(p2))

You can easily check that bidder 1 wants to win only if v1 + g(p1) is higher than v2 + 
g(p2), and furthermore, prefers telling the truth to lying when she does win. This 
implies truthfulness of the auction.
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“Really General Model”

Example: “full” daily deals.

vi(A1)

vi(A2)

vi(A3)

Choices of 
mechanism

A1

A2

A3

pi(A2)

Beliefs conditioned 
on choice

Outcomes

$$$$

$$$

$$

$

Example: a daily deals setting with multiple slots on the page for sale and many 
arriving users.

The choices of the mechanism are the possible page layouts: An assignment of slots 
to merchants.

The outcomes for bidder i could be, for instance, total number of clicks on i’s 
advertisements (if any).

i has beliefs conditional on the mechanism’s choice: Given that the mechanism 
chooses layout A2, i has a distribution over the total number of clicks she will get.



“Really General Model”

Example: “full” daily deals.

vi(A1)

vi(A2)

vi(A3)

Choices of 
mechanism

A1

A2

A3

pi(A2)

Beliefs conditioned 
on choice

Outcomes

$$$$

$$$

$$

$Externality: gA2(p1(A2), …, 
pn(A2)) 

The “third party”’s welfare is modeled by a function of all the predictions.
There could be a different function for each possible choice of the mechanism.



Q: For what externality functions g 
can we truthfully max welfare?

$$$$

$$$

$$
$

Theorem 2.
gA(p1(A),...) are convex in each argument  we ⇔
can maximize welfare = gA(p1(A),...) + sumi vi(A).

There exists a deterministic, truthful, welfare-maximizing auction if and only if all 
g_A(p1(A),...) are convex in each argument.

Note that this is a weaker condition than convexity: The function f(x,y) = x*y is convex 
in each argument, but is not a convex function.



Q: For what externality functions g 
can we truthfully max welfare?

$$$$

$$$

$$
$

Auction: VCG and carefully constructed scoring rules.

Theorem 2.
gA(p1(A),...) are convex in each argument  we ⇔
can maximize welfare = gA(p1(A),...) + sumi vi(A).

The auction relies on, for each agent, carefully decomposing gA(p1(A),...) into a 
scoring rule for that particular agent, after plugging in the predictions of all other 
agents. Then, the form of the auction looks like VCG.
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2. Really general model, characterization
3. Applications and conclusion



Application of Characterization: 
Network Problems

• Each edge has:
– cost vi
– stochastic delay ~ pi

• Utility of traveler: g(p1, …, pm ) for path 1…m

• Goal: maximize total welfare

s t

This is an unrelated problem. However, once we write it down formally, we can notice 
that it fits our general model, and therefore our results apply (both positive and 
negative).

Note that a convex function g corresponds to a risk-averse traveler: One who prefers 
a more certain travel time to a more uncertain one, even with a higher expected 
travel time.



General takeaways

Bidders Auctioneer

Third party

● Welfare includes externality on
● … depending on private predictions of bidders
● Implementable  externality is convex function of ⇔

prediction
● Auction = VCG + “decomposed” scoring rules



Future work

• Practicality

• Assumptions to avoid negative results

• Applications

• Revenue maximization

• Explore: convexity, implementable allocation functions, 

and implementable objective functions.  c.f. Frongillo and 
Kash, General Truthfulness Characterizations via Convex Analysis
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Extension: Principal-agent problems

• Each worker has a set of efforts, each with:
– cost
– stochastic quality

• Externality: observed quality of work

• Goal: maximize total welfare

Another quick example of unrelated areas where our results apply. Take a 
principal-agent problem where the agents hold private information about their 
quality, i.e. the quality is picked from a distribution known to the agents but not the 
principal. The externality here is on the principal (whom we might also think of as 
the auctioneer, but this is no problem for the model). If the principal is risk-averse 
with respect to quality, our auction applies.


