
Online Stochastic Matching with Unequal Probabilities

Aranyak Mehta*, Bo Waggoner**, and Morteza Zadimoghaddam*

*Google Inc. aranyak@google.com, zadim@google.com
**Harvard. bwaggoner@fas.harvard.edu

Abstract

The online stochastic matching problem is a variant of

online bipartite matching in which edges are labeled with

probabilities. A match will “succeed” with the probability

along that edge; this models, for instance, the click of a

user in search advertisement. The goal is to maximize the

expected number of successful matches. This problem was

introduced by Mehta and Panigrahi (FOCS 2012), who

focused on the case where all probabilities in the graph

are equal. They gave a 0.567-competitive algorithm for

vanishing probabilities, relative to a natural benchmark,

leaving the general case as an open question.

This paper examines the general case where the prob-

abilities may be unequal. We take a new algorithmic

approach rather than generalizing that of Mehta and Pan-

igrahi: Our algorithm maintains, at each time, the proba-

bility that each offline vertex has succeeded thus far, and

chooses assignments so as to maximize marginal contribu-

tions to these probabilities. When the algorithm does not

observe the realizations of the edges, this approach gives

a 0.5-competitive algorithm, which achieves the known

upper bound for such “non-adaptive” algorithms. We

then modify this approach to be “semi-adaptive:” if the

chosen target has already succeeded, choose the arrival’s

“second choice” instead (while still updating the proba-

bilities non-adaptively). With one additional tweak to

control the analysis, we show that this algorithm achieves

a competitive ratio of 0.534 for the unequal, vanishing

probabilities setting. A “fully-adaptive” version of this

algorithm turns out to be identical to an algorithm pro-

posed, but not analyzed, in Mehta and Panigrahi (2012);

we do not manage to analyze it either since it introduces

too many dependencies between the stochastic processes.

Our semi-adaptive algorithm thus can be seen as allow-

ing analysis of competitive ratio while still capturing the

power of adaptivity.

1 Introduction

1.1 Motivation. The Online Bipartite Matching
problem has received considerable attention over the
last decade, because it captures two sided markets
with known demand and online supply (or vice-versa).
The main application domain has been in Internet
Advertising, although there has been recent work with
applications in Crowdsourcing as well [11, 14]. A
large number of variants have been studied, including
budgeted, weighted and capacitated versions, as
well as different stochastic models of online arrival
(see Section 1.3 for more detailed references to this
literature).

The basic online bipartite matching problem
was introduced in [17]: There is a bipartite graph
G = (I, J, E), where the vertices in I (corresponding
to advertisers in Internet advertising, tasks in crowd-
sourcing) are given offline, and a new vertex j ∈ J
(ad slot, workers) is revealed in each online step, to-
gether with its incident edges. The algorithm can
either match j to one of its available (i.e. currently
unmatched) neighbors in I or not match j at all, with
the overall goal of maximizing the number of matched
pairs at the end of the algorithm.

A recent paper [24] introduced a new variant
of this classic problem, which they called the On-
lineStochasticMatching problem. The motiva-
tion behind this variant was the observation that,
in both the applications cited above, the goal is not
simply to maximize the size of the matching, but to
maximize the number of matched edges that become
successful. Whether a matched edge becomes suc-
cessful or not depends on a stochastic process which
runs after the match has been made. The algorithm
only has knowledge of the probability of success of
each edge before making the match, and learns the
outcome after making the match.

For example, in Internet advertising, the predomi-
nant payment method is the pay-per-click method: An
advertiser pays only if the user actually clicks on the
ad. So, matching the advertiser’s ad to the arriving ad

slot is not sufficient; the ad should also be successful
in terms of the user clicking on it. Only then can we
say that the involved parties (user, advertiser and auc-
tioneer) gained value from the match. The auctioneer
has a prediction of the clickthrough rate, which is the
probability that the ad will be clicked on if shown in
this ad slot. Similarly, in crowdsourcing, the match-
ing platform has an estimate of the probability that a
given worker will successfully complete the task, and
the value is derived only upon completion of the task.
We formally define the problem next:

1.2 The OnlineStochasticMatching Prob-
lem. In this problem (also known as online matching
with stochastic rewards), every edge (i, j) also has an
associated probability of success pij . When a new ver-
tex j ∈ J arrives online, the algorithm either chooses
not to match it at all, or matches it to one of its
available neighbors. If j is matched to i ∈ I using the
edge (i, j), an independent random coin is tossed and
the edge (i, j) becomes a successful match with prob-
ability pij . In this case, we say that i was successful
and remove it from the set of available vertices. On
the other hand, if the match (i, j) is not successful,
i remains available and a neighbor of i that arrives
later in the online order can be matched to i (but j
cannot be matched again). The overall objective is to
maximize the expected number of successful vertices
i ∈ I. Note that one may assume the graph to be
a complete bipartite graph, with pij = 0 for “non-
edges”. Also note that the case of all pij ∈ {0, 1} is
the classic non-stochastic case.

Competitive Ratio. In [24], the authors provide a
definition for the competitive ratio of this problem,
which captures the performance of the algorithm with
respect to an optimum benchmark. Because the goal is
to study both the online and the stochastic aspects of
the problem, they define OPT as the optimal solution
to the following offline, deterministic problem: The
graph is known in advance and the reward of an
edge (i, j) is deterministically pij . Each vertex i ∈ I
can be assigned multiple vertices j ∈ J , up to a
budget of 1. That is, defining the load Li on a vertex
i to the sum of weights of the assigned edges, the
goal is to maximize

∑
i min{Li, 1}. This definition

reduces to the usual competitive ratio in the classic
non-stochastic case. The paper also discusses other
possible ways of defining competitive ratio, and the
limitations of those alternate definitions.

1.3 Previous Results. Our results are directly
related to the results in [24], which we describe in
detail below.

In [24], the authors first show that a Greedy al-
gorithm (which matches the arriving vertex j to that
available neighbor i which has the highest value of
pij) achieves a ratio of 1/2. Thus, 1/2 is a baseline for
this problem upon which to improve (this is the case
in the classic version as well, although the argument
for the stochastic setting is a strict generalization).

Equal probabilities case: [24] focuses on the
special case in which all the probabilities are equal, i.e.,
the pij are either 0 or p, for some value p ∈ [0, 1]. They
provide an algorithm, called StochasticBalance to
solve this special case, giving a competitive ratio of
0.5(1 + e−2) ' 0.567 as p → 0, and which reduces
to 1/2 as p increases to 1. This algorithm works as
follows:

Algorithm 1.1: StochasticBalance

(For the equal probabilities case, from [24].)
For each arriving vertex j ∈ J :

- Match j to that available (i.e., not yet successfully
matched) neighbor that has been (unsuccessfully)
matched the least number of times.

The algorithm makes a non-obvious observation:
Suppose the arriving vertex j has two available
neighbors. Why should we care which neighbor has
more failed matches so far? After all, both neighbors
have the same state right now, namely they are both
available. But a Greedy algorithm, which ignores
these failed matches, achieves only 1/2. The difference
comes from the online nature of the problem, where
there is uncertainty over which neighbor will have
more opportunities in the future.

The authors also show that the ratio of the
Ranking algorithm (designed in [17] for the classic,
non-stochastic case) stays above 1/2 even in the
stochastic case with equal probabilities, starting at
1− 1/e with p = 1 and reducing to 0.534 as p→ 0.

Upper bound: The authors also provide an upper
bound of 0.62 < 1 − 1/e for any (randomized) algo-
rithm for this problem, showing that the combination
of online and stochastic aspects of the problem make
it strictly harder than the problem with only one of
the two aspects: Ranking achieves 1 − 1/e in the
non-stochastic online version, while the stochastic
offline version has an simple algorithm achieving
1− 1/e: simply use the benchmark described above,
i.e., find a maximum allocation for the non-stochastic,
budgeted, edge-weighted version of the instance, in
which every vertex in I has a budget of 1, and an
edge weight is equal to its probability of success.

The power of adaptivity: An adaptive algorithm
is one which does not match to an already successful
neighbor; a non-adaptive algorithm is one which
ignores this information, and may make a wasteful
match to an already succeeded vertex. In [24], the
authors prove that no non-adaptive algorithm can
achieve a ratio better than 1/2. Together with the
algorithmic result, this gives a lower bound on the
“adaptivity-gap” ([7]).

The general case: The authors leave the the
following question open: Is there an algorithm
which achieves a ratio strictly greater than 1/2
for non-uniform probabilities (even as all pij →
0)? They suggest an algorithm, which they call
GeneralizedStochasticBalance, as a strong candi-
date for solving the general case with small probabili-
ties. This is a generalization of StochasticBalance,
and makes intuitive sense. However, they state that
the analysis becomes difficult, due to a certain tech-
nical argument (chaining of losses as we move items
around during the charging argument) failing to go
through. This failure even suggests a possible counter-
example for the algorithm, although that seems hard
to come up with. We will describe this algorithm in
detail in Section 2.

1.4 Our Contributions. In this paper we attack
the general problem with small probabilities, provid-
ing an algorithm, called SemiAdaptive, achieving a
ratio of 0.534, thus resolving the open problem (but
leaving open the optimal ratio).

Theorem 1.1. SemiAdaptive achieves a competitive
ratio of 0.534 for the OnlineStochasticMatch-
ing problem with general probabilities pij , as pij → 0.

The general case is important, not only as a hard
open question from the literature, but also because
the special case is too artificial in the context of
the motivating applications. In these applications,
the question often becomes one of trading off two
choices: one choice with a large probability of
success and broad targeting (neighborhood), and
another with low probability but narrow targeting.
That is precisely what our algorithm does (as well
as what GeneralizedStochasticBalance from [24]
attempted to do).

Our algorithm is quite different from
GeneralizedStochasticBalance, and our de-
sign and analysis approach is also different from
that in [24]. The difference in the structure of the
algorithm comes from the level of adaptivity it uses.
Recall that [24] proved that a non-adaptive algorithm
can do no better than a ratio of 1/2. Our algorithm is

certainly adaptive, but in a more limited sense than
GeneralizedStochasticBalance. Our algorithm
uses scores which are updated non-adaptively, and
which guide the adaptive decisions. The non-adaptive
score updates and the adaptive choices work together
in lock-step. Limiting the level of adaptivity makes
the algorithm smoother in some sense, and more
amenable to analysis, while retaining the power of
adaptivity.

Our analysis techniques are also very different
from those in [24]. The latter first finds a correspon-
dence between this problem and that of budgeted
allocation with stochastic, unknown budgets. This
is a very interesting reduction, which helps in ana-
lyzing their algorithm using techniques from the non-
stochastic problem. We do not use this correspon-
dence at all, but provide a different, first-principles,
argument.

Along the way, we also define a simple non-
adaptive algorithm, which is a building block for our
semi-adaptive algorithm, and prove that it achieves
a ratio of 1/2. This shows that the upper bound of
1/2 for non-adaptive algorithms (proved in [24]) can
be achieved. This ratio does not require vanishing
probabilities.

Theorem 1.2. NonAdaptive achieves a competitive
ratio of 1/2 for the OnlineStochasticMatch-
ing problem with general probabilities.

Our building block also leads to the defini-
tion of a fully-adaptive algorithm (which we can
not analyze), but which turns out to be precisely
GeneralizedStochasticBalance – thus providing an
interesting alternate derivation of the same.

In the next section, we briefly describe the
landscape of other related work in the literature,
before coming back to our problem and describing the
algorithmic development and analysis in Section 2.

1.5 Other Related Work. There has been con-
siderable work done recently on online matching, for
which a detailed overview can be found in the survey
article [23]. The basic non-stochastic version was intro-
duced in [18], and the budgeted setting (the AdWords
problem) was studied in [25, 5, 15]. Other variants
in the non-stochastic version include vertex-weighted
matching [1] and edge-weighted matching ([9], among
others). Another series of results, also under the name
of Stochastic Matching, deals with stochastic arrivals,
either random order, or iid ([8, 10, 2, 16, 21, 22, 20, 19])
for the different versions of matching or budgeted al-
location. Here, the rewards are non-stochastic, and
the problems admit better ratios than the adversar-
ial arrival models (as opposed to our problem which

is provably strictly harder than the non-stochastic
version). Another related line of work is on match-
ing with stochastic rewards on offline or stochastic
arrival graphs [6, 3] with problem details making it
uncomparable to our problem. While most of the work
has been motivated by Online Advertising, there has
been a recent spurt of activity from the motivation of
Crowdsourcing as well [11, 14].

The question of the power of adaptivity in al-
gorithms was introduced in [7], for the stochastic
knapsack problem, and there has been some subse-
quent work ([12, 4, 13]) on other packing problems.
In that framework, our result provides a bound on
the adaptivity gap for online stochastic matching.

2 Our Algorithm

In this section we show the development of the algo-
rithmic techniques. We will first describe two diamet-
rically opposite algorithms: a fully-non-adaptive algo-
rithm and a fully-adaptive algorithm (which turns out
to be identical to GeneralizedStochasticBalance,
and which we do not know how to analyze). Then
we will define our semi-adaptive algorithm, which
sits in a sweet-spot between adaptiveness and non-
adaptiveness.

2.1 Starting Point: NonAdaptive. As a starting
point, we begin by constructing a non-adaptive
algorithm that achieves the upper bound of 0.5 for
non-adaptive algorithms. We note that, in our setting
of general edge probabilities, this result seems non-
trivial. A naive greedy algorithm that assigns along
the highest-probability edge has a competitive ratio
of 0: consider a complete graph where all edges have
probability p, except that all edges to the offline vertex
i have probability p + ε. The greedy algorithm will
match every single arrival to i.

A better attempt could be to maximize the
total online “weighted” matching (treating weights
as probabilities), using an algorithm such as that in
[25]. One difficulty is that we do not know how to set
the “budgets” of that algorithm in this case, because
we do not know the optimal matching in advance.
Another question is in the analysis. Assigning a
vertex a total weight of x only guarantees a probability
of success of 1 − e−x. So naively, even if we could
implement an algorithm guaranteeing a 1− 1

e ratio of
the maximum weighted matching, this would only
immediately guarantee a competitive ratio in our
problem of 1− e−(1−1/e) = 0.468.... It seems possible
that such an approach could achieve 0.5, but a much
finer analysis would be needed.

We briefly introduce some notation. Throughout
this paper, we will take tj to the the time at which the

vertex j ∈ J arrives, with 0 < tj < 1. wi(t) will be
equal to the probability that vertex i has “succeeded”
before time t in the algorithm (where the probability is
over the realizations of the edges, and any randomness
in the algorithm itself). We write wi for wi(1), the
probability that i succeeds.

Algorithm 2.1: NonAdaptive

Initialize wi(0) = 0, ∀i
At time tj , when vertex j arrives:

- Match j to the neighbor with the highest value
of (1−wi(tj))pij (call that neighbor 1), irrespec-
tive of whether 1 has already succeeded or not.

- Update w1(t): For all t > tj , update
w1(t) = w1(tj) + (1− w1(tj))p1j .

In Section 3, we show that NonAdaptive has a
competitive ratio of 0.5. It exhibits two key charac-
teristics that inspire our “semi-adaptive” algorithm.
First, its update rule is “greedy at the margin”: At
each step, arrival j is matched to the vertex i that
maximizes

Pr[i succeeds exactly on arrival j]

= Pr
[
i has not succeeded by time tj

and edge (i, j) succeeds
]

= (1− wi(tj))pij

by independence of the edges. Thus, the algorithm
is greedy in maximizing marginal contribution to
expected number of successes.

The second characteristic is that the algorithm’s
variables, wi(t), depend only on the input instance
and not the outcomes of the edges. If a certain edge
succeeds with probability pij , then after we try that
edge, we update wi(t) using the number pij regard-
less of whether the match actually succeeded or not.
(Naturally, since the algorithm is non-adaptive.) Inter-
estingly, this implies that, after running NonAdaptive

on some given instance, our computed wi(t)s can be
used to calculate the competitive ratio on that input
graph, even though this particular run of the algo-
rithm may be better or worse than that ratio due to
the randomness of the edges. While this property is
natural for a non-adaptive algorithm, it will actually
also hold for our semi-adaptive algorithm as well.

2.2 FullyAdaptive algorithm. Note how
NonAdaptive performs non-adaptive choices as well
as non-adaptive updates to the ws. At the other
end of the spectrum is the following fully-adaptive
algorithm, which performs adaptive choices as well as

updates.1

Algorithm 2.2: FullyAdaptive

Initialize wi(0) = 0, ∀i
At time tj , when vertex j arrives:

- Order all vertices by decreasing value of
(1− wi(tj))pij .

- Adaptive choice: match the vertex to the first
available (not yet successfully matched) neighbor
in this order, call it i∗.

- Adaptive updates: if the match (i∗, j) fails
to succeed, then update, ∀ t > tj :
wi∗(t) = wi∗(tj) + (1− wi∗(tj)) · pi∗j

Interestingly, FullyAdaptive is essentially identi-
cal to GeneralizedStochasticBalance proposed in
[24]. That algorithm picks the available neighbor
with the highest value of pije

−l(i), where l(i) is the
“failed load” on i: the sum of pij′ , where the sum
is over all j′ which were (unsuccessfully) matched
to i in the past. Meanwhile, for the wi defined in
FullyAdaptive, (1 − wi(t)) is equal to the product
of (1 − pij′) over all j′ which were (unsuccessfully)
matched to i in the past. For vanishing probabilities,
(1−wi(t))→ e−l(i). This equivalence shows that using
the inverse exponential scaling function was the cor-
rect guess in GeneralizedStochasticBalance. As
mentioned earlier, we do not know how to analyze
this fully-adaptive algorithm.

2.3 Semi-adaptive: Attempt 1. In order to
obtain both the power of adaptivity as well as
the analyzability of NonAdaptive, we define a semi-
adaptive algorithm. Here we first describe the first
attempt at designing such an algorithm, and in the
next section, we will define our final algorithm which
is slightly different (mainly for ease of analysis). The
overall strategy of the semi-adaptive algorithms can be
described as doing non-adaptive updates coupled
with adaptive decisions.

Algorithm 2.3: Semi-Adaptive Attempt 1
Initialize wi(0) = 0, ∀i
At time tj , when vertex j arrives:

- Order all vertices by decreasing value of
(1− wi(tj))pij .

- Adaptive choice: Match the vertex to the first
available neighbor in this order.

- Non-adaptive updates: ∀ i, ∀ t > tj , update

1For FullyAdaptive, unlike the other algorithms presented,

wi(t) is not exactly equal to the probability that i succeeds by
time t over all random edges realizations. Instead, it seems to

be tracking probability of success only over edges matched to i.

wi(t) = wi(tj)+
Pr[i is the first available neighbor] · pij

Note how the updates are completely non-
adaptive, i.e., independent of the choice of the al-
gorithm, or which edges actually succeed. This is
critical in moving towards being able to analyze the
algorithm. However, it seems like there is still not
enough independence or controlled correlations be-
tween vertex successes in this algorithm to be able to
analyze it. In particular, a difficulty in the analysis
comes from “cascades”. Consider an arrival j with
first choice 1 and second choice 2. In the case where
1 has already succeeded, we would like to be able to
lower-bound j’s contribution to 2. But perhaps 1’s
success has caused some subsequent arrival to match
to some i′, which succeeded, and so on, causing 2 to
succeed before j arrives. It is difficult to control the
likelihood of this event analytically, so it is difficult
to count j’s contribution to 2.

This leads us to our final algorithm, which is
also semi-adaptive (in the sense of decoupling the
choices and the updates), but introduces certain
limitations in order to keep the analysis manageable.
First, we only utilize an arrival’s first two choices
in its ranking. It is perhaps surprising that this is
sufficient to achieve our result, but on the other hand,
the “power of two choices” is a common theme in
randomized algorithms. Second, we introduce some
independence that eliminates “cascades” of the type
described above, at the cost of somewhat lowering the
number of times a vertex utilizes its second choice.

2.4 Semi-adaptive: Final algorithm. As men-
tioned above, we will modify the previous semi-
adaptive algorithm in two ways. First, for simplicity
in the analysis, we will only consider the first two
choices of an arriving vertex (rather than going down
the entire list until finding an available neighbor).

Second, we will introduce some additional inde-
pendence to help in the analysis. To visualize our
approach, imagine the online arrival process as fol-
lows. First an input instance is selected; then, all
edges are independently realized with the appropriate
probabilities. Then, the arrival process begins. When
a vertex j arrives, the algorithm observes the labels
pij of its edges, but does not observe the realization.
The algorithm can choose to “probe” a single edge;
if the probed edge was actually realized, this match
succeeds.

In the first attempt above at a semi-adaptive
algorithm, we may describe the adaptive decision as
follows: When j arrives, look at its first choice (call
it 1). Look at all previous edges to 1 that have been

probed by the algorithm; if any are successes, then j
should move on to looking at its second choice instead.
(If all are failures, then j should be assigned to 1.)

Our tweak will be this: Do not look at all previous
edges to 1 that were probed. Instead, only look at
edges coming from arrivals whose first choice was 1.
If any are successes, then j may move on to looking
at its second choice instead. Otherwise, attempt to
assign j to 1 (but note this may fail because 1 has
already suceeded due to some “second choice”).

This is implementable for the following reason.
As long as 1 is not yet successful, we always probe
an edge from an arrival whose first choice is 1. If 1
becomes successful from a first choice arrival, then we
do not need to probe any more edges; subsequent first
choice arrivals should move on to their second choice.
If 1 becomes successful from a second choice arrival,
then for all subsequent first choice arrivals j′, we can
simulate probing the edge from j′ to 1 by flipping a
coin with weight p1j′ . We continue these simulated
probes until one of them succeeds; after this time,
first choice arrivals j should move on to their second
choice.

The variable FirstSucc(i) ∈ {False, True} will
track whether or not a first-choice edge to i has been
realized.

Algorithm 2.4: SemiAdaptive

Initialize wi(0) = 0, FirstSucc(i) = False, ∀i
At time tj , when vertex j arrives:

- Order all vertices by decreasing value of
(1− wi(tj))pij .

- (Let 1 ∈ I be the highest, j’s “first choice”, and
2 ∈ I be the second-highest.)

- Adaptive choice:
- If 1 has not yet succeeded, match j to 1 and

if it succeeds, set FirstSucc(1) to True.
- If 1 has succeeded but FirstSucc(1) = False,

simulate matching j to 1: with probability
pij , set FirstSucc(1) to True.

- If 1 has succeeded, FirstSucc(1) = True, and
2 has not yet succeeded, match j to 2.

- Non-adaptive updates: For all t > tj , update
w1(t) = w1(tj) + Pr[1 is available]p1j

w2(t) = w2(tj)+
Pr[FirstSucc(1) = True, 2 is available]p2j

Note that the updates in the last step are still
non-adaptive, since they only rely on the wi(t)s and
the probabilities of FirstSucc(i) at time t. These
are fixed for a given input instance regardless of edge
realizations because they depend only on the identities
of previous arrivals’ first and second choices; these

were non-adaptive because they relied on previously
computed probabilities, and so on inductively.

To execute the algorithm, we need to be able to
compute the updates to wi(t) at each time t, given all
arrivals up until t. In Section 6, we show that wi(t)
can be computed via constant-time updates for each
arrival.

3 Warmup: Analyzing NonAdaptive

In this section, we show that NonAdaptive has a
competitive ratio of 0.5, which is optimal for non-
adaptive algorithms. We will be able to analyze
SemiAdaptive by showing where it improves over
NonAdaptive in this analysis.

Throughout this paper, given an input instance,
in an optimal offline weighted assignment let i∗(j)
be the partner of an arrival j, let j∗(i) be the set of
partners of a vertex i, and let

oi =
∑
j∈j∗(i)

pij

be the total weight matched to i. For the algorithm
under consideration (in this section, NonAdaptive),
let 1j and 2j be the first and second choices of an
arrival j. Recall that wi(t) is the probability that
i has succeeded before time t and wi = wi(1), the
probability of success when all vertices have arrived.

Let

O1 =
∑
i

oi(1− wi)

O2 =
∑
i

oiwi.

Lemma 3.1. For NonAdaptive, both of the following
hold:

E[number of successes] ≥ O1 , and

E[number of successes] ≥ O2.

Proof. Since wi is the probability that i has succeeded
at the end of the arrivals,

E[number of successes] =
∑
i

wi.

Since oi ≤ 1 for all i, we immediately get the second
inequality. For the first, note that, for each arrival
j that is assigned to 1j , we have by definition of the
algorithm that

(1− w1j
(tj))p1jj ≥ (1− wi∗(j)(tj))pi∗(j)j .

Therefore,

E[number of successes] =
∑
j

(1− w1j
(tj))p1jj

≥
∑
j

(1− wi∗(j)(tj))pi∗(j)j

≥
∑
j

(1− wi∗(j))pi∗(j)j

≥
∑
i

(1− wi)
∑

j:i∗(j)=i

pij

=
∑
i

(1− wi)oi

proving the first inequality.

Theorem 3.1. NonAdaptive has a competitive ratio
of 0.5.

Proof. Using Lemma 3.1,

2E[number of successes] ≥ O1 +O2

=
∑
i

oi.

4 Key Lemmas for SemiAdaptive

To analyze the performance of SemiAdaptive, we
prove in this section certain structural lemmas. These
give inequalities bounding the performance of the
algorithm on any instance; in Section 5 we use these
inequalities to obtain a numerical bound. Thus, the
key part of our analysis lies in these structural lemmas
(the remainder being mainly computation and adding
less intuition). The overall strategy is to consider
“gains”, or contributions to the expected number of
successes, broken down into categories depending
on the arrival and the vertex it matches. These
categories are formally defined and described in the
next subsection; then we prove the lemmas.

4.1 Types of Gains. When an online vertex j
arrives with first choice 1j and second choice 2j ,
it increases the probabilities that 1j and 2j have
succeeded. We call each increase in probability of
success a “gain”, and we classify them into types,
associated with colors to help with exposition and
memory.

To recall notation introduced earlier in the paper:
i denotes an offline vertex, j an arrival appearing
at time tj ∈ (0, 1), oi the total weight assigned to i
in the optimal offline matching, i∗(j) and j∗(i) the
partners of j and i in the optimal offline matching,
called their “OPT partners”, wi(t) the probability
that i has succeeded before time t, and wi = wi(1).

The types of gains used are as follows:

• “Blue”: gains of first choices; for each i,
Bi =

∑
j:1j=i(1− wi(tj))pij .

• “Green”: gains of second choices; for each i,
Gi =

∑
j:2j=i Pr[j matches to i and succeeds].

• “Purple”: gains of first choices who are also OPT
partners; for each i,
Pi =

∑
j∈j∗(i):1j=i(1− wi(tj))pij .

• “Red”: gains of first choices who are not OPT
partners; for each i,
Ri =

∑
j:1j=i 6=i∗(j)(1− wi(tj))pij .

• “Salmon”: potential gains of second choices, from
the perspective of the corresponding first choice.
I.e., if j’s first choice is i, then j’s contribution
to Si is how much gain j would have given its
second choice had i not been ahead in the ranking.
Si =

∑
j:1j=i(1− w2j (tj))p2jj .

For a final piece of notation, let

ci =
∑

j∈j∗(i):1j=i

pij .

This corresponds to the total weight of OPT partners
of i whose first choice in the matching is also i, or the
purple gains.

To keep the big picture in mind, note that we
have broken the gains down as follows by definition:

Total gain = Blue + Green

Blue = Purple + Red

Blue corresponds to first choices and green to second
choices. The salmon gains will be used to lower-bound
the green gains, but there is no immediate connection.

4.2 Intuitive Overview. The previous analysis
of NonAdaptive in Section 3 may be described as
follows. First, we only counted blue, first-choice gains
(since there are no second choices in that algorithm).
Second, (as we will see,) red gains are “worse” in a
sense than purple, so we lower-bounded the gains by
assuming they were of the red type: matchings where
the first choice is not the OPT partner. Third, since
the algorithm chooses the first choice to maximize
marginal gains, we could lower-bound the marginal
gain of each arrival by the gain it would have given
to its OPT partner, had that partner been its first
choice.

To see how SemiAdaptive improves, consider an
arrival j. Either its first choice is also its OPT partner,
or not. If so, j gives us a “purple” gain, which is

quite good. The improvement here over “red” gains,
intuitively, is that we can show that purple gains
compound in a sense. Notice that, if all arrivals’ first
choices were their OPT partners, each offline vertex
would match a total weight of at least oi and the
competitive ratio would be 1− 1

e . So if j’s first choice
is its OPT partner, we already have an improvement
over NonAdaptive.

If j’s first choice is not its OPT partner, then by
definition of the algorithm (just as with the analysis
of NonAdaptive), j gives a “red” gain that is at least
as large as it would have given to its OPT partner.
Additionally (unlike with NonAdaptive), j may also
be assigned to its second choice and give it a “green”
gain. Since j’s first choice was not its OPT partner,
its second choice must be either its OPT partner or
an option just as good. Thus, in this scenario, we get
the same “red” gains as NonAdaptive, but we also
get “green” second-choice gains.

Thus, both cases for an arrival j give improve-
ments over NonAdaptive. The tradeoff between the
cases is captured by the parameters ci, which count
how much arriving weight falls into the first case (js
whose first choice is their OPT partner).

Finally, in order to bound the “green”, second-
choice gains, we will need to look from the perspective
of a vertex i who has succeeded and whose first-choice
arrivals begin assigning to their second choices. The
contributions of such vertices can be bounded in terms
of the hypothetical “salmon” gains Si.

4.3 Lemmas. All lemmas refer to SemiAdaptive

on any given input instance. We begin with simple
bounds on the types of “blue”, first-choice gains.

Lemma 4.1.
∑
iRi ≥

∑
i(1− wi)(oi − ci).

Proof. As in the proof of Lemma 3.1, but only
considering those first-choice partners of i whose OPT
partner is not i.∑

i

Ri =
∑

j:1j 6=i∗(j)

(1− w1j
(tj))p1jj

≥
∑

j:1j 6=i∗(j)

(1− wi∗(j)(tj))pi∗(j)j

≥
∑

j:1j 6=i∗(j)

(1− wi∗(j))pi∗(j)j

≥
∑
i

(1− wi)
∑

j∈j∗(i):1j 6=i

pij

=
∑
i

(1− wi)(oi − ci).

Lemma 4.2. Pi ≥ (1− wi)(eci − 1).

Proof. By definition,

Pi =
∑

j∈j∗(i):1j=i

(1− wi(tj)) pij .

Since wi(t) is monotonically increasing in t, this sum
is minimized if all j in the sum arrive after all other
vertices, i.e., for some time t∗, tj > t∗ =⇒ j ∈
j∗(i), 1j = 1. Thus, assume this is the case. Then we
have

1− wi = (1− wi(t∗))
∏

j∈j∗(i):1j=i

(1− pij).

Verbally, the probability of failure at the end of
the algorithm is the probability that we have not
succeeded by time t∗ and that each of our j fail (using
independence to obtain the product). We can now
lower-bound the total gain:

wi − wi(t∗) = (1− wi(t∗))− (1− wi)

= (1− wi)

 ∏
j∈j∗(i):1j=i

1

1− pij

− 1


≥ (1− wi)

 ∏
j∈j∗(i):1j=i

epij

− 1


= (1− wi)(eci − 1).

We simply used that 1 − x ≤ e−x for all x, that
(ea)(eb) = ea+b, and the definition of ci.

Notice that, by combining Lemmas 4.1 and 4.2, we
get

Bi = Ri + Pi

≥ (1− wi)(eci − 1 + oi − ci).

When ci > 0, this is a strict improvement on the
bound on NonAdaptive used in Lemma 3.1, which
was (1 − wi)oi. And in fact, this inequality holds
for NonAdaptive as well; however, for NonAdaptive

one can set ci = 0 and remove the benefit of this
inequality.

Having bounded the blue (first-choice) types of
gains, we now turn to bounding the green (second-
choice) gains. Lemma 4.4, the most technically
involved, will show that the green gains can be
bounded in terms of “salmon” gains. Recall that Si is
the total gain that arrivals “would give their second
choice if assigned”. First, in Lemma 4.3, we lower-
bound these salmon gains; the proof and intuition is
almost identical to that of Lemma 4.1.

Lemma 4.3.
∑
i Si ≥

∑
i(1− wi)(oi − ci).

Proof. ∑
i

Si =
∑
j

(1− w2j
(tj))p2jj

≥
∑

j:1j 6=i∗(j)

(1− w2j (tj))p2jj

≥
∑

j:1j 6=i∗(j)

(1− wi∗(j)(tj))pi∗(j)j

≥
∑

j:1j 6=i∗(j)

(1− wi∗(j))pi∗(j)j

≥
∑
i

(1− wi)
∑

j∈j∗(i):1j 6=i

pij

=
∑
i

(1− wi)(oi − ci).

The final lemma, Lemma 4.4, is crucial; without
lower-bounding second-choice gains, we cannot guar-
antee a competitive ratio of larger than 0.5 (since then
we are essentially non-adaptive). It is also the only
lemma that requires vanishing probabilities; in par-
ticular, even NonAdaptive guarantees a competitive
ratio of 0.5 for the large probabilities case. Finally, in
Lemma 4.4 we will utilize our tweak to SemiAdaptive

where an arrival only matches to its second choice if
FirstSucc(i) = True for its first choice.

Explanation and sketch for Lemma 4.4.
The intuition behind Lemma 4.4 is the following.
Recall that the green gain variable Gi tracks the
probability that i succeeds due to an arrival j where j’s
first choice was already taken, so it chose to match to
i instead. Briefly, we say that Gi tracks that amount
of “second-choice gains” sent to i. Meanwhile, we
consider the salmon gain variable Si, which does not
have an immediately apparent contribution to the gain
of the algorithm. Intuitively, Si tracks the amount of
hypothetical second-choice gains that could be sent
out from i to other vertices. The total salmon gain∑
i Si is relatively easy to lower-bound, by Lemma

4.3. Thus, in order to lower-bound the total green
gain

∑
iGi, we will compare it to a function of the

salmon gains. This motivates Lemma 4.4.
The intuition behind the form and proof of

Lemma 4.4 comes from the diminishing returns of
arriving vertices. We will sketch an informal argument
capturing the main intuition. Let Si(t) be the value
of Si summing only over vertices arriving before time
t; i.e., think of Si(t) as the value of Si at the point in
time t. Thus, Si = Si(1).

Now, an arrival j whose first choice is i increases
Si(tj) by some amount, call it dSi(tj), indicating that
j could give a dSi(tj) gain (increase in probability of
success) to its second choice, call it i′. Sometimes, j
actually does give this gain to i′. That is, intuitively,

sometimes this dSi(tj) gain contributes to Gi′ . When
does this occur? Exactly when j’s first choice i is
already taken and i′ is available. We assert that
the probability that i is already taken can be lower-
bounded by the total Si(tj) so far. So for each arrival,
the green contribution is

Pr[i is taken] · (amount of contribution)

≥ Si(tj)dSi(tj).

So, the total green contribution over all arrivals, as
probabilities vanish, has a lower bound that looks like∫ 1

t=0

Si(t)dSi(t) = S2
i /2.

There are two wrinkles in the above paragraph. First,
the event that i is already taken is not independent
of the event that the second choice i′ is available, so
we must be careful in awarding ourselves this gain.
Second, because of our definition of SemiAdaptive, j
can match to its second choice only if FirstSucc(i) =
True, rather than any time i has already succeeded.

These wrinkles are related: The conditioning on
FirstSucc(i) was added to SemiAdaptive in order
to address the first wrinkle. By conditioning on
FirstSucc(i) = True rather than on i having been
already taken, we introduce independence between
the event that j attempts to assign to its second
choice i′ and the event that i′ has already succeeded.
This allows us to lower-bound the green contributions
almost as described above. After accounting for these
subtleties, we lose an additive S3

i /6 compared to the
naive but faulty argument.

Lemma 4.4. In the limit as pij → 0, we have∑
iGi ≥

∑
i
S2
i

2 −
S3
i

6 .

Proof. Notation:

• Let Take(i, tj) be the event that offline vertex
i has succeeded before time tj . This stands for
“i is Taken by some vertex before tj .” (Thus
wi(tj) = Pr[Take(i, tj)].)

• Let Blue(i) be the set of arrivals whose first
choice is offline vertex i.

• Let Sendii′ be the subset of these whose first
choice is i and whose second choice is i′. This
stands for “the set of arrivals that i might Send
to i′.” All other vertices are denoted nonSendii′ .

• Let Take(i, tj , Sendii′) be the event that i is
successful before time tj due to an arrival in
the set Sendii′ (standing for “i is Taken by a
vertex in Sendii′ before tj”), and analogously for
Take(i, tj , nonSendii′).

• For an arriving vertex j with first choice 1j ,
let BSj be the event that a first-choice edge
to j’s first choice is realized before j arrives.
This stands for “Blue Success at j’s first choice.”
Thus, BSj is the event that FirstSucc(1j) is set
to True before j arrives.

• Let yj = (1 − Pr[BSj])p1jj . Thus, yj is the
probability that FirstSucc(1j) is set to True

exactly due to j’s arrival.

• Let xj = (1 − Pr[Take(2j , tj)])p2jj . If j has no
second choice, set xj = 0. We have Si(t) =∑
j∈Blue(i):tj<t xj .

We note that Pr[BSj] ≤ Pr[Take(1j , tj)], so
yj ≥ (1 − Pr[Take(1j , tj)])p1jj . Because of the
algorithm’s ranking of 1j ahead of 2j , this implies
that yj ≥ xj .

We will use the symbols for logical AND (∧) and
NOT (¬).

Proof: We wish to bound the total “green” gain,
which is∑

i

Gi =
∑
i

∑
j∈Blue(i)

Pr[BSj ∧ ¬Take(2j , tj)]p2jj

=
∑
i

∑
j∈Blue(i)

(P1 ·P2)(4.1)

where

P1 = Pr
[
¬Take(2j , tj , nonSendi2j

)

| BSj ∧ ¬Take(2j , tj , Sendi2j
)
]
p2jj ,

P2 = Pr[BSj ∧ ¬Take(2j , tj , Sendi2j
)].

To bound this sum, we use the following claim (proof
given at the end of the proof of the lemma):

Claim 1. First, P1 ≥ xj.
Second,

P2 ≥
∑

j1∈Blue(1j):
tj1<tj

xj1

1−
∑

j2∈Send1j2j :

tj1<tj2<tj

xj2

 .

Plugging Claim 1 into Equation 4.1, we get∑
i

Gi =
∑
i

Zi,

where, letting J1 = {j1 ∈ Blue(i) : tj1 < tj},

Zi ≥
∑

j∈Blue(i)

xj
∑
j1∈J1

xj1

1−
∑

j2∈Sendi2j :

tj1<tj2<tj

xj2


≥

∑
j∈Blue(i),j1∈J1

xjxj1 −
∑

j∈Blue(i),j1∈J1,
j2∈Blue(i):
tj1<tj2<tj

xjxj1xj2 .

The first line was simply plugging in the claim, and
for the second inequality, we used that Send1j2j

is a
subset of Blue(1j) and each xi ≥ 0, so subtracting a
sum over more terms can only decrease the total.

Now, recalling that Si =
∑
j∈Blue(i) xj , in the

limit as all pij → 0 (and therefore all xij → 0), we get∑
i

Gi ≥
S2
i

2
− S3

i

6
.

It remains only to prove Claim 1.

Proof. [Proof of Claim 1, first part] By expanding the
definition of xj , we see that we must prove that

Pr
[
¬Take(2j , tj , nonSend1j2j

)

| BSj ∧ ¬Take(2j , tj , Send1j2j)
]

≥ Pr[¬Take(2j , tj)].

Intuitively, the reason this holds is that the choice
of an arrival in nonSend1j2j

to attempt to as-
sign2 to 2j is independent of the events BSj and
¬Take(2j , tj , Send1j2j). So on both the left and the
right side of the inequality, we have the same attempts
from all nonSend1j2j

arrivals. On the other hand, the
right side possibly includes attempts from Send1j2j

arrivals, which lowers the probability that 2j is avail-
able, but on the left side we know that every attempt
from Send1j2j arrivals is unsuccessful.

More formally, we have that

Pr[¬Take(2j , tj)]
(4.2)

=
∏

j′:tj′<tj

Pr[j′ does not take 2j | ¬Take(2j , tj′)].

That is, the product, over all arrivals up to time tj ,
of the probability that this arrival fails to assign to
2j and succeed, given that 2j is available (i.e. given
that all prior arrivals have failed on 2j).

2We say j attempts to assign to i if i is j’s first choice, or
if i is j’s second choice and j’s first choice has succeeded. In

other words, j will assign to i if i is available.

Meanwhile, letting
J = {j′ ∈ nonSend1j2j : tj′ < tj},

Pr
[
¬Take(2j , tj , nonSend1j2j

)

| BSj ∧ ¬Take(2j , tj , Send1j2j
)
]

=
∏
j′∈J

Pr
[
j′ does not take 2j | ¬Take(2j , tj′),

BSj ,¬Take(2j , tj , Send1j2j)
]

=
∏
j′∈J

Pr[j′ does not take 2j | ¬Take(2j , tj′)].
(4.3)

The final equality holds because, given that 2j is
available when j′ arrives, j′’s choice to assign to 2j
depends only on whether one of the following occur: its
first choice 1j′ = 2j ; or its second choice 2j′ = 2j and
BSj′ , that is, j′’s first choice “would have succeeded
from a blue” by time tj′ . Thus, the probability that j′

assigns to 2j , given that 2j is available, is independent
of BSj and ¬Take(2j , tj , Send1j2j

).
Now the first part of the claim reduces to proving

that Expression 4.2 is at most Expression 4.3. Since
each is a product over probabilities, and the former
contains all the terms of the latter and some additional
terms, we are done.

Proof. [Proof of Claim 1, second part]

P1 = Pr[BSj ∧ ¬Take(2j , tj , Send1j2j
)]

= Pr[BSj]− Pr[BSj ∧ Take(2j , tj , Send1j2j
)].

We will show that

Pr[BSj ∧ Take(2j , tj , Send1j2j)]

(4.4)

≤
∑

j2∈Send1j2j :tj2<tj

xj2

 ∑
j1∈Blue(1j):tj1<tj2

yj1

 .

Before proving Inequality 4.4, we show how it finishes
the proof of the second part of the claim. Inequality
4.4, along with the fact that by definition, BSj =

∑
j1∈Blue(1j):tj1<tj

yj1 , gives that

P1 = Pr[BSj]− Pr[BSj ∧ Take(2j , tj , Send1j2j
)]

≥
∑

j1∈Blue(1j):tj1<tj

yj1

−
∑

j2∈Send1j2j :

tj2<tj

xj2

 ∑
j1∈Blue(1j):
tj1<tj2

yj1



=
∑

j1∈Blue(1j):
tj1<tj

yj1

1−
∑

j2∈Send1j2j :

tj1<tj2<tj

xj2


after rearranging. Noting that the coefficient of each
yj1 is nonnegative (as it is a probability), we use the
inequality yj1 ≥ xj1 to complete the proof of the
claim.

It only remains to prove Inequality 4.4.

Pr[BSj ∧ Take(2j , tj , Send1j2j
)]

=
∑

j2∈Send1j2j :

tj2<tj

Pr[BSj2] Pr[¬Take(2j , tj2) | BSj2]p2j2
j2

We will use the fact that Pr[¬Take(2j , tj2) | BSj2] ≤
Pr[¬Take(2j , tj2)]. To show this fact, expand:

Pr[¬Take(2j , tj2)]

(4.5)

=
∏

j′:tj′<tj2

Pr[j′ does not take 2j | ¬Take(2j , tj′)],

and

Pr[¬Take(2j , tj2) | BSj2]

(4.6)

=
∏

j′:tj′<tj2

Pr[j′ does not take 2j | ¬Take(2j , tj′), BSj2].

The terms in the two expressions correspond one-to-
one. If we do not have 1j′ = 1j and 2j′ = 2j , then
there is no difference in the j′ term between the two
expressions. But if we do, then the j′ term in Equation
4.6 is smaller than the term in Equation 4.5, because
given the conditions of Equation 4.6, j′ is certain to
attempt to match to 2j′ , whereas this is not certain
in Equation 4.5. This proves the fact.

Using this fact, we prove Inequality 4.4:

Pr[BSj ∧ Take(2j , tj , Send1j2j
)]

≤
∑

j2∈Send1j2j :tj2<tj

Pr[BSj2] Pr[¬Take(2j , tj2)]p2j2
j2

=
∑

j2∈Send1j2j :tj2<tj

Pr[BSj2]xj2

=
∑

j2∈Send1j2j :tj2<tj

xj2

 ∑
j1∈Blue(1j):tj1<tj2

yj1

 .

Having proved the claim, we are done proving the
lemma.

5 Deriving a Bound for SemiAdaptive

In this section, we use the constraints implied by
our lemmas to prove the numerical bound on the
competitive ratio of SemiAdaptive.

For any input instance, the performance of
SemiAdaptive satisfies Lemmas 4.1, 4.2, 4.3, and 4.4.
Therefore, the solution to the following optimization
problem is a lower bound on the competitive ratio of
SemiAdaptive:

minimize

∑
i wi∑
i oi

s.t.

wi = Bi +Gi ∀i
Bi = Pi +Ri ∀i
Pi ≥ (1− wi)(eci − 1) ∀i∑

i

Gi ≥
∑
i

(
S2
i

2
− S3

i

6

)
∑
i

Ri ≥
∑
i

(1− wi)(oi − ci)∑
i

Si ≥
∑
i

(1− wi)(oi − ci).

The variables are Bi, Gi, Pi, Ri, Si, wi, ci,oi, all in [0, 1]
(and the number of offline vertices n).

Theorem 1. (Theorem 1.1) The competitive ratio
of SemiAdaptive is lower-bounded by 0.534.

Proof. To solve the mathematical program, rewrite it

more simply:

min

∑
i wi∑
i oi

s.t.∑
i

wi ≥
∑
i

(1− wi)(eci − 1)

+

(∑
i

Ri

)
+

(∑
i

S2
i

2

)
−

(∑
i

S3
i

6

)
∑
i

Ri ≥
∑
i

(1− wi)(oi − ci)∑
i

Si ≥
∑
i

(1− wi)(oi − ci).

We have that each Si ∈ [0, 1] because Si ≤ Bi by
definition, and Bi ≤ wi ≤ 1. So by convexity of
x2

2 −
x3

6 on [0, 1], letting ∆ = 1
n

∑
i Si,

(∑
i

S2
i

2

)
−

(∑
i

S3
i

6

)
≥ n

(
∆2

2
− ∆3

6

)
.

So rewrite:

min

∑
i wi∑
i oi

s.t.∑
i

wi ≥
∑
i

(1− wi)(eci − 1)

+

(∑
i

Ri

)
+ n

(
∆2

2
− ∆3

6

)
∑
i

Ri ≥
∑
i

(1− wi)(oi − ci)

∆ ≥ 1

n

∑
i

(1− wi)(oi − ci).

At the optimum, the constraints on the sum of Ris
and ∆ are tight (otherwise, we could improve the
solution). Therefore, we can assume without loss of
value in the solution that

∆ =
1

n

∑
i

Ri =
1

n

∑
i

(1− wi)(oi − ci).

This gives the simpler problem

min

∑
i wi∑
i oi

s.t.∑
i

wi ≥
∑
i

(1− wi)(eci − 1)

+ n

(
∆ +

∆2

2
− ∆3

6

)
∆ =

1

n

∑
i

(1− wi)(oi − ci).

We have oi, wi,∆ ∈ [0, 1] and ci ∈ [0, oi]. Now, we
can also add the following constraint:

wi ≥ 1− e−ci ,

because a total mass of at least ci is assigned to i.
(Formally, this constraint follows directly from wi ≥ Pi
and Lemma 4.2.)

Solution strategy. We divide the offline ver-
tices into two categories. In Category 1, all i have
wi = 1. It is immediate from the optimization prob-
lem that if wi = 1, then it is optimal to set oi = 1
(since this does not affect any constraint) and the
value of ci is arbitrary within its bounds (for the same
reason).

Category 2 contains all other offline vertices. We
will show that it is without loss of optimality to
suppose that, in Category 2, all i have ci = c∗ for some
fixed c∗, wi = w∗ for the fixed value w∗ = 1−e−c∗ , and
oi = 1. With this, letting α ∈ [0, 1] be the fraction
of offline vertices in Category 1, the minimization
problem becomes

min α+ (1− α)w∗

s.t.

α+ (1− α)w∗ ≥ (1− α)(1− w∗)(ec
∗
− 1)

+ ∆ +
∆2

2
− ∆3

6
∆ = (1− α)(1− w∗)(1− c∗)
w∗ = 1− e−c

∗
.

Simplifying [note that (1−w∗)(ec∗ − 1) = e−c
∗
(ec
∗ −

1) = w∗], we get

min α+ (1− α)(1− e−c
∗
)

s.t.

α ≥ ∆ +
∆2

2
− ∆3

6

∆ = (1− α)e−c
∗
(1− c∗).

This problem in two variables, α and c∗, is solved to
yield an objective value of 0.53480... with α ≈ 0.401,
c∗ ≈ 0.252, and w∗ ≈ 0.223. This solution can be
found by a solver or, for instance, checking all feasible
(α, c∗) ∈ [0, 1]2, since the partial derivatives of the
objective are bounded by 1 in absolute value, meaning
that at a discretization level of ε the output is at most
2ε above the true minimum.

Remainder of solution. It remains to show
that Category 2, all offline vertices where wi 6= 1,
contains (without loss of optimality) only vertices
with: ci = c∗ for some fixed c∗, wi = w∗ = 1− e−c∗ ,
and oi = 1.

The steps we take will be:

1. Show that, in Category 2, all ci = c∗ for some
fixed c∗.

2. Show that, without loss, all wi are at an extreme
(as small or as large as possible), with at most one
exception. Since those wi at the upper extreme
have wi = 1 and are in Category 1 by definition,
this leaves all vertices in Category 2 at their
minimum, w∗ = 1 − e−c

∗
, with possibly one

exception.

3. Show that this exception does not exist, and show
that without loss all oi = o∗ in Category 2.

4. Show that o∗ = 1.

This gives the above optimization problem and solu-
tion.

Step 1. First, we show that in Category 2, all
ci = c∗ for some c∗.

At an optimum solution the partial derivative of
the Lagrangian with respect to ci must be zero. The
Lagrangian is

L =

∑
i wi∑
i oi

+ λ

(
−
∑
i

wi +
∑
i

(1− wi)(eci − 1)

+ n

(
∆ +

∆2

2
− ∆3

6

))

where

∆ =
1

n

∑
i

(1− wi)(oi − ci).

Thus,

∂L

∂ci
= λ(1− wi)eci + λ

(
1 + ∆− ∆2

2

)
(1− wi)

= λ(1− wi)
(
eci −

(
1 + ∆− ∆2

2

))
.

Therefore, for wi < 1 (it is easy to check that λ > 0
since ∂L

∂wi
= 0), at an optimal solution

ci = ln

(
1 + ∆− ∆2

2

)
= c∗.

Step 2. Now we show that, without loss, all wi
are at an extremum: wi = 1 or wi = 1− e−ci . To see
this, let the right side of the constraint be

f =
∑
i

(1− wi)(eci − 1) + n

(
∆ +

∆2

2
− ∆3

6

)
.

Then

df

dwi
= −(eci − 1)−

(
1 + ∆− ∆2

2

)
(oi − ci).

The exact form is not important to us here. The only
point is that we can take any i and i′ with df

dwi
≤ df

dwi′
.

If we increase wi by ε and decrease wi′ by ε, then the
objective stays constant and the constraint remains
feasible (perhaps some slack was introduced), so we
have not lost optimality. This operation was not
possible only if wi was already at its lower bound,
1 − e−ci , or wi′ was already at its upper bound, 1.
So it is without loss to suppose that, in any optimal
solution, all wi are at an extremum — except possibly
for one i. However, this possibility will be eliminated
shortly.

This shows that without loss all offline vertices
(except for one exception) in Category 2 have wi =
1− e−ci = 1− e−c∗ = w∗.

Step 3. Now we eliminate the exception; then
we show that all oi = o∗ for some fixed o∗.

df

doi
=

(
1 + ∆− ∆2

2

)
(1− wi).

Suppose the exceptional i exists, satisfying wi > w∗.
Then df

doi
< df

doi′
for all i′ 6= i. So we can decrease oi

by ε and increase some other oi′ by an appropriate
amount in order to maintain feasibility and decrease
the value of the objective. This argument fails only
if oi = c∗ (its minimum) or all other oi′ = 1. If
the oi = c∗, then since wi > 1 − e−c

∗
, we have

wi

oi
> (1− e−c∗)/c∗ ≥ 1− 1

e , which is a contradiction
to the assumption that we are at an optimum: The
optimum will be less than 1− 1

e , so removing i entirely
improves the solution. Thus, if the exception exists,
we must have all other oi′ = 1 so that oi cannot be
lowered in this way. But note that oi ≤ oi′ , while
ci = ci′ = c∗. If oi < oi′ , then we have df

dwi
> df

dwi′
,

so we could decrease wi and increase wi′ without
changing the objective and introduce slack in the
constraint; but then the solution could be improved

and we are not at optimum. This argument fails only
if oi = 1 or wi is at its minimum, wi = 1− e−c∗ ; but
in the latter case it is not an exception after all.

Now, we have in Category 2 all vertices having
ci = c∗, wi = w∗ = 1 − e−c∗ , and oi = o∗ for some
choices of c∗ and o∗. We now show that o∗ = 1.

Note that the derivatives df
doi

are all equal and do
not depend on the value of oi (in fact, by plugging
in wi = w∗, they are equal to 1). Therefore, we
can without loss suppose from now on that all oi are
equal to some o∗. (This is because, if they are not
all equal, we can increase the smallest and decrease
the largest without changing the objective or the
constraint; repeat until they are equal.)

Step 4. We now have: An α-fraction of vertices
in Category 1 with wi = oi = 1, and a (1−α)-fraction
in Category 2 with ci = c∗, wi = w∗ = 1− e−c∗ , and
oi = o∗. Thus, the problem is

min
α+ (1− α)w∗

α+ (1− α)o∗

s.t.

α ≥ ∆ +
∆2

2
− ∆3

6
∆ = (1− α)(1− w∗)(o∗ − c∗).

We now show that o∗ = 1 at optimum. Let f =

∆ + ∆2

2 −
∆3

6 ; then

df

do∗
=

(
1 + ∆− ∆2

2

)
(1− α)(1− w∗)

= 1− α

since c∗ = ln
(

1 + ∆− ∆2

2

)
and w∗ = 1 − e−c

∗
.

Meanwhile,

df

dα
= −

(
1 + ∆− ∆2

2

)
(1− w∗)(o∗ − c∗)

= −(o∗ − c∗).

Thus, changing o∗ by ε and α by ε 1−α
1+o∗−c∗ maintains

a feasible solution (that is, α ≥ f). The change
in the numerator of the objective, α + (1 − α)w∗,
is ε 1−α

1+o∗−c∗ e
−c∗ . The change in the denominator,

α+ (1− α)o∗, is

ε
1− α

1 + o∗ − c∗
+ (1− α)ε− ε 1− α

1 + o∗ − c∗
o∗

= ε(1− α)

(
1 +

1− o∗

1 + o∗ − c∗

)
.

The ratio of change in numerator to change in

denominator is e−c∗

2−c∗ < 0.5 for all c∗ ∈ (0, 1] (and

we know c∗ > 0 at an optimum, else ∆ > 0 and we
get a contradiction from the definition of c∗).

Now, since we were at optimum, we had some
competitive ratio A

B ≥ 0.5 (we know the optimum is
at least 0.5 because by removing some constraints we
recover the analysis of NonAdaptive, which obtained
0.5). And it may be checked that A+dA

B+dB < A
B if

dA
dB < A

B . This is the case here, with dA
dB = e−c∗

2−c∗ .
Thus, our changes to α and o∗ resulted in changes
to the numerator and denominator that lowered the
overall ratio. This contradicts the assumption that we
were at optimum, so either α or o∗ cannot be raised
in the optimum. If it were the case for α, then α = 1
and the optimum would be 1, so it must be the case
for o∗, that is, o∗ = 1.

This completes the four steps promised, giving
the minimization problem described above, which is
solved to an optimum ratio of 0.53480....

6 Computing Updates for the Algorithm

To execute SemiAdaptive, we need to be able to
compute wi(t) at each time t, given all arrivals up
until t. Here, we show that wi(t) can be computed
via constant-time updates for each arrival. To do so,
we will need to maintain the following variables at
each time t (note that we only need the values at the
current time, and do not need to store past values):

• wi(t) = the probability that i has succeeded by
time t, for each offline vertex i.

• wBi(t) = Pr[FirstSucc(i) = True at time t];
that is, the probability that i “would have
succeeded from a first choice” by time t, for each
offline vertex i.

• wGi′i(t), which intuitively is the probability that
i “would have succeeded from a second choice
whose first choice was i′”, if i did not succeed
in any other way, for each pair of offline vertices
i′ and i. Specifically, wGi′i(t) is the probability
that, at some time t1 < t, FirstSucc(i′) was set
to True; and, when flipping a pij-weighted coin
for all arrivals j at time tj ∈ (t1, t) with first
choice i′ and second choice i, at least one of them
comes up heads. (A formal definition for wGi′i(t)
appears later in this section.)

Before describing the constant-time update rules, a
brief note on memory. In the theoretical worst case,
the total memory required is O(n2) where n is the
number of offline vertices, since wGii′(t) is maintained
for all pairs i, i′. But in applications such as AdWords,
we expect the memory requirement to be smaller: we
need to maintain only those wGii′ where i is some

arrival’s first choice and i′ is some arrival’s second
choice. This indicates that i and i′ are both highly
relevant advertisers for the same query; the set of such
pairs may be quite sparse. Also, in practice we might
expect relatively few advertisers n as compared to the
number of online arrivals.

The updates are governed by the following rela-
tion: The probability that i has not yet succeeded at
time t is

1− wi(t)

=
∏
j:tj<t

Pr
[
j fails to take i | i is available at time tj

]
=

∏
j:tj<t,1j=i

(1− pij)

·
∏

j:tj<t,1j=i′ 6=i

Pr[j fails to take i | i available at tj]

= (1− wBi(t))
∏
i′ 6=i

(1− wGi′i(t)) .
(6.7)

Now, suppose some j arrives at time tj with first
choice 1 and second choice 2. Then immediately, for
t > tj , we have that the probability 1 has succeeded
is the probability it has already succeeded plus the
probability that it has not, but it succeeds on the edge
from j; similarly for the probability of FirstSucc(1)
being set to True:

w1(t) = w1(tj) + (1− w1(tj))p1j

wB1(t) = wB1(tj) + (1− wB1(tj))p1j .

(It can be verified that this update maintains Equation
6.7.) Meanwhile, for all i 6= 1, wBi(t) is unchanged;
for all pairs i′i 6= 12, wGi′i(t) is unchanged; and for
all i 6= 1, 2, wi(t) is unchanged. So we only need to
determine the update to wG12(t) and to w2(t).

In fact, the update rule for wG12(t) is

wG12(t) = p2jwB1(tj) + (1− p2j)wG12(tj).

This can be shown in two ways: By a “counting”
argument, and by arithmetic manipulation.

For the first method, for convenience let the
event tracked by wG12(t) be called SecSucc(12), so
that wG12(t) = Pr[SecSucc(12) = True by time t].
Consider the edge between 2 and j. Regardless
of whether j is actually assigned to 2 during the
execution of the algorithm, we can flip a p2j-weighted
coin to determine if this edge “would have” succeeded.
So, suppose we flip the coin. If it comes up heads (with
probability p2j), and we have that FirstSucc(1) =
True by time tj , then it must be that SecSucc(12) =
True occurs at or before tj . (It may occur before tj

due to some other arrival, but even if it does not, the
edge between 2 and j is realized, so it occurs at time
tj .) This gives the contribution p2jwB1(tj) from the
event that the coin comes up heads.

If the coin comes up tails (with probability 1−p2j),
then the probability of SecSucc(12) = True occurring
by time t > tj is exactly the chance that it occurred
by time tj , since if it occurs then it occurs by
some arrival prior to j. This gives the contribution
(1− p2j)wG12(tj) from the event that the coin comes
up tails, which proves the update rule.

For those who prefer an arithmetic proof: Denote
the arrivals before time t whose first choice is 1
and second choice is 2 by, in order, j1, . . . , jk. For
convenience, where tj0 would appear in the following,
let tj0 = 0. Then we have

1− wG12(t)

= 1− wB1(tjk) +

k∑
l=1

Pr[1 succeeded at t ∈ [tjl−1
, tjl)]

· Pr[each of jl, . . . , jk failed at 2]

= 1− wB1(tjk)

+

k∑
l=1

[
wB1(tjl)− wB1(tjl−1

)
] k∏
r=l

(1− p2jr) .

This equality can be justified as follows. The probabil-
ity that SecSucc(12) = True has not occurred is bro-
ken down according to the time at which FirstSucc(1)
is set to True. With probability 1−wB1(tjk), it does
not occur (or only occurs after the last useful arrival
has arrived), and SecSucc(12) = True certainly does
not occur. Otherwise, FirstSucc(1) = True can oc-
cur in some interval between two of our arrivals, call
them jl−1 and jl (where, if l = 1, then jl−1 is not
really an arrival but merely represents the start of
the algorithm). The probability that FirstSucc(1) is
set to True in this interval is wB1(tjl)− wB1(tjl−1

).
Given that it occurs in this interval, the probability
that SecSucc(12) = True still fails to occur is the
probability that the remainder of our arrivals, from
jl to jk, all fail on their edges to 2.

With this formula in hand, consider the update
for time t > tjk when jk arrives. After jk arrives, we

have

wG12(t)

= wB1(tjk)−
k∑
l=1

[
wB1(tjl)− wB1(tjl−1

)
] k∏
r=l

(1− p2jr)

= wB1(tjk)−
[
wB1(tjk)− wB1(tjk−1

)
]

(1− p2jk)

−
k−1∑
l=1

[
wB1(tjl)− wB1(tjl−1

)
] k∏
r=l

(1− p2jr)

= p2jkwB1(tjk) + (1− p2jk)wB1(tjk−1
)

−
k−1∑
l=1

[
wB1(tjl)− wB1(tjl−1

)
] k∏
r=l

(1− p2jr)

= p2jkwB1(tjk) + (1− p2jk)

(
wB1(tjk−1

)

−
k−1∑
l=1

[
wB1(tjl)− wB1(tjl−1

)
] k−1∏
r=l

(1− p2jr)

)
= p2jkwB1(tjk) + (1− p2jk)wG12(tjk−1

).

Now that we have the update for wG12(t), only
the update for w2(t) remains. Since in Equation 6.7
only wG12(t) has changed, this can be accomplished
in O(1) steps by taking 1 − w2(tj), dividing by
1 − wG12(tj), and multiplying by the new value
1− wG12(t) to obtain the new value 1− w2(t).

7 Discussion and Future Work

In this paper, a competitive ratio of 0.534 is achieved
for the OnlineStochasticMatching problem for
the general case of unequal (but vanishing) proba-
bilities. This result required a new algorithmic ap-
proach that we hope may be useful in other online
or stochastic settings. The key feature is to main-
tain non-adaptive state about the probabilities of suc-
cess of each vertex, and to make adaptive decisions
based on that state. This approach allowed us to
analyze SemiAdaptive, which achieves the above ra-
tio. The other intuition behind SemiAdaptive is to
make choices so as to maximize the marginal proba-
bility of success. We saw that this principle enabled
NonAdaptive to achieve a ratio of 0.5, which is opti-
mal for non-adaptive algorithms.

The OnlineStochasticMatching problem is
young and many open questions remain. Even for
the case of equal probabilities, the optimal achiev-
able competitive ratio is unknown, lying somewhere
between 0.567 and 0.621 for vanishing probabilities.
For improving on the competitive ratio shown in this
paper, FullyAdaptive seems to be a strong candidate
algorithm, but it has eluded analysis thus far.

References

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande,
and Aranyak Mehta. Online vertex-weighted bipar-
tite matching and single-bid budgeted allocations.
In SODA, pages 1253–1264, 2011.

[2] Bahman Bahmani and Michael Kapralov. Improved
bounds for online stochastic matching. In ESA (1),
pages 170–181, 2010.

[3] Nikhil Bansal, Anupam Gupta, Jian Li, Julián
Mestre, Viswanath Nagarajan, and Atri Rudra.
When lp is the cure for your matching woes: Im-
proved bounds for stochastic matchings - (extended
abstract). In ESA (2), pages 218–229, 2010.

[4] Anand Bhalgat, Ashish Goel, and Sanjeev Khanna.
Improved approximation results for stochastic knap-
sack problems. In SODA, pages 1647–1665, 2011.

[5] Niv Buchbinder, Kamal Jain, and Joseph Naor.
Online primal-dual algorithms for maximizing ad-
auctions revenue. In ESA, pages 253–264, 2007.

[6] Ning Chen, Nicole Immorlica, Anna R. Karlin, Mo-
hammad Mahdian, and Atri Rudra. Approximating
matches made in heaven. In ICALP (1), pages 266–
278, 2009.

[7] Brian C. Dean, Michel X. Goemans, and Jan
Vondrák. Adaptivity and approximation for stochas-
tic packing problems. In SODA, pages 395–404,
2005.

[8] Nikhil R. Devanur and Thomas P. Hayes. The
adwords problem: online keyword matching with
budgeted bidders under random permutations. In
ACM Conference on Electronic Commerce, pages
71–78, 2009.

[9] Jon Feldman, Nitish Korula, Vahab S. Mirrokni,
S. Muthukrishnan, and Martin Pál. Online ad
assignment with free disposal. In WINE, pages 374–
385, 2009.

[10] Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni,
and S. Muthukrishnan. Online stochastic matching:
Beating 1-1/e. In FOCS, pages 117–126, 2009.

[11] Gagan Goel, Afshin Nikzad, and Adish Singla. Allo-
cating tasks to workers with matching constraints:
Truthful mechanisms for crowdsourcing markets. In
Proc. International World Wide Web Conference
(WWW), 2014.

[12] Michel X. Goemans and Jan Vondrák. Stochastic
covering and adaptivity. In LATIN, pages 532–543,
2006.

[13] Anupam Gupta, Ravishankar Krishnaswamy, Marco
Molinaro, and R. Ravi. Approximation algorithms
for correlated knapsacks and non-martingale bandits.
In FOCS, 2011.

[14] Chien-Ju Ho and Jennifer Wortman Vaughan. Online
task assignment in crowdsourcing markets. In AAAI,
2012.

[15] Bala Kalyanasundaram and Kirk Pruhs. An optimal
deterministic algorithm for online b-matching. Theor.
Comput. Sci., 233(1-2):319–325, 2000.

[16] Chinmay Karande, Aranyak Mehta, and Pushkar
Tripathi. Online bipartite matching with unknown
distributions. In STOC, pages 587–596, 2011.

[17] Richard M Karp, Umesh V Vazirani, and Vijay V
Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the twenty-second annual
ACM symposium on theory of computing, pages 352–
358. ACM, 1990.

[18] Richard M. Karp, Umesh V. Vazirani, and Vijay V.
Vazirani. An optimal algorithm for on-line bipartite
matching. In STOC, pages 352–358, 1990.

[19] Thomas Kesselheim, Klaus Radke, Andreas Tönnis,
and Berthold Vöcking. An optimal online algorithm
for weighted bipartite matching and extensions to
combinatorial auctions. In Algorithms–ESA 2013,
pages 589–600. Springer, 2013.

[20] Nitish Korula and Martin Pál. Algorithms for
secretary problems on graphs and hypergraphs. In
ICALP (2), pages 508–520, 2009.

[21] Mohammad Mahdian and Qiqi Yan. Online bipartite
matching with random arrivals: an approach based
on strongly factor-revealing lps. In STOC, pages
597–606, 2011.

[22] Vahideh H. Manshadi, Shayan Oveis Gharan, and
Amin Saberi. Online stochastic matching: Online
actions based on offline statistics. In SODA, pages
1285–1294, 2011.

[23] Aranyak Mehta. Online matching and ad allocation.
Foundations and Trends in Theoretical Computer
Science, 8(4):265–368, 2013.

[24] Aranyak Mehta and Debmalya Panigrahi. Online
matching with stochastic rewards. In Proceedings of
the 53rd Annual IEEE Symposium on Foundations
of Computer Science, pages 728–737. IEEE, 2012.

[25] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani,
and Vijay V. Vazirani. Adwords and generalized
online matching. J. ACM, 54(5), 2007.

