
A Course in Graduate Algorithms Lecture 14

Online No-Regret Learning

Designed by Prof. Bo Waggoner for the University of Colorado-Boulder Updated: 2023

We will consider repeatedly making a decision from a fixed set of options. After each decision, we learn
our utility for that decision as well as the ones we chose not to take. Our goal is to learn over time to
make good decisions in terms of maximizing total utility, or minimizing total loss. The setting is a bit
similar in spirit to online algorithms such as online matching, but we will see that the benchmarks are
different.

Objectives:

• Know the setting of online learning.

• Understand the definition of regret and average per-step regret.

• Understand the intuition and details of the Multiplicative Weights (MW) algorithm.

• Be able to adapt MW to specific settings, including how to set the parameters.

1 Online Learning: Making Repeated Decisions

Example: picking a route to school. Each day, you need to decide which route you will take to
school. There are N different routes, and depending on traffic and other factors, each is sometimes fast
or slow. Each day, after choosing a route, you experience a delay. You also can use the internet to find
out what would have happened if you took a different route.

Over time, you track the total delay you’ve experienced. Meanwhile, you can ask: if you had taken
different routes, what would your total delay be? You evaluate your route-choosing algorithm based on
how well it performs compared to this hypothetical.

Formal model. We will study a decisionmaking process over rounds t = 1, . . . , T . The learner has a
fixed finite set of possible actions i = 1, . . . , N , the same in each round. Each round t:

1. The algorithm A picks an action it.

2. Each action i experiences a loss `ti ∈ [0, 1].

3. The algorithm experiences the loss of the action it picked, `tA = `tit .

The total loss of action i over all rounds is Li =
∑T

t=1 `
t
i. The total loss of the algorithm is LA =

∑T
t=1 `

t
A.

Regret. We want to compare the algorithm’s total loss LA to some benchmark. The benchmark we
will consider is what the loss would be if we chose some fixed action i in every round. In particular, we
compare to the best fixed action, OPT = mini Li.

Definition 1. The regret of the algorithm A is LA − OPT. The average per-step regret of the
algorithm is 1

T (LA −OPT).

We say an algorithm guarantees regret f(T ) if, for all possible sequences of losses, the expected
regret of the algorithm (over any internal randomness) is bounded by f(T ).

14-1



Example revisited. In the daily route example, the actions i are the different routes to school. The
delay `ti of each route is between zero and one hours. Suppose there are T = 100 days. The total delay
experience by the algorithm over all rounds is LA hours, for example, 50 hours, while if it had chosen
route i every time, it would have been Li hours. The benchmark is OPT = mini Li, and let us suppose
OPT = 30 hours. The regret is LA −OPT = 20 hours.

Notice that the average per-day delay experienced by the algorithm is 1
T LA = 1

2 hour or 30 minutes
per day, while the average per-day delay of the benchmark is 1

T OPT = 3
10 hours or 18 minutes. Therefore,

the average per-day regret is 30− 18 = 12 minutes. If we had just taken a certain route i every day,
instead of following our algorithm, we could have saved on average 12 minutes per day.

We will see that it is possible to achieve a regret guarantee where the average per-day regret converges
to zero as T →∞. Such an algorithm is called “no regret”.

Exercise 1. Which of the following regret guarantees would qualify an algorithm as “no regret”?

1. f(T ) = T 2/3

2. f(T ) = 0.03T

3. f(T ) =
√
T

Exercise 2. Is it possible for there to be a sequence of losses and an algorithm where the average
per-day regret converges to zero, but the algorithm never selects the optimal action?

1.1 The importance of randomization

Our goal is to have low regret on all possible sequences of losses. Because of this, it turns out to be
important to pick our actions randomly. If we have a deterministic algorithm, then at a given round,
its decision it is completely determined by the past history. There is a sequence of losses where `tit = 1
but `ti = 0 for all actions i 6= it. On sequences like this, the deterministic algorithm will perform very
poorly.

To combat this issue, we will turn to randomization. At each round, the algorithm picks a probability
distribution. Meanwhile, the losses `ti are determined independently. Then the algorithm draws an action
from the distribution. It is evaluated by its expected regret.

2 The Multiplicative Weights Algorithm

The Multiplicative Weights (MW) algorithm and its variants are immensely popular and important in
theoretical computer science and machine learning. It picks the action from a distribution at each step.
The distribution biases toward actions that have had a lower loss so far. Notice that

∑t−1
s=1 `

s
i is the total

loss of actio ni prior to round t (the sum is zero if t = 1).

Algorithm 1 Multiplicative Weights

Choose parameter ε ∈ (0, 12 ).
for t = 1 to T do

Let wt
i = exp

(
−ε
∑t−1

s=1 `
s
i

)
.

Let W t =
∑N

i=1 w
t
i .

Let the probability of each action i = 1, . . . , N be wt
i/W

t.
Choose action it from this distribution.

end for

14-2



The “learning rate” ε. The larger ε, the more sensitive is the algorithm to a change in loss values.
Sensitivity is both good and bad. It allows the algorithm to react and learn quickly, e.g. if a particular
action has high losses. However, it can also allow the algorithm to be misled. It may react to noise
or temporary changes, which can lead to poor performance. We will next see how to set ε for optimal
theoretical guarantees.

Exercise 3. What distribution over actions does MW use at round t = 1?
Hint: assume that an empty summation evaluates to zero.

Exercise 4. Suppose there are two actions, and consider a sequence with `t1 = 0 and `t2 = 1 for all
rounds t. Will MW perform better on this sequence if ε is large or if it is small?

2.1 Regret analysis

First, we will show a regret bound for any fixed choice of ε ∈ (0, 1). Then, we will pick ε to get a
“no-regret” guarantee.

Theorem 1. The Multiplicative Weights algorithm with ε ∈ (0, 1) guarantees

regret ≤ εT

2
+

ln(N)

ε
.

Proof. Let i∗ = argmini Li, the optimal action in hindsight. First, let us lower-bound the total weight
after the rounds are over:

WT+1 ≥ wT+1
i∗

= exp (−εLi∗) . (1)

Second, let us upper-bound it. We use three facts: `ti ∈ [0, 1]; for any x ≥ 0, we have e−x ≤ 1− x+ x2

2 ;
and our friend 1 + x ≤ ex for all x. For any t,

W t+1 =

N∑
i=1

wt+1
i

=

N∑
i=1

wt
i exp

(
−ε`ti

)
≤

N∑
i=1

wt
i

(
1− ε`ti +

ε2(`ti)
2

2

)

≤
N∑
i=1

wt
i

(
1− ε`ti +

ε2

2

)

= W t −

(
ε

N∑
i=1

wt
i`

t
i

)
+W t ε

2

2

= W t − εW t E `tA +W t ε
2

2

= W t

(
1− εE `tA +

ε2

2

)
≤W t exp

(
−εE `tA +

ε2

2

)
.

14-3



Iterating this, we get

WT+1 ≤W 1
T∏

t=1

exp

(
−εE `tA +

ε2

2

)
= N exp

(
−εELA +

ε2T

2

)
= exp

(
−εELA +

ε2T

2
+ ln(N)

)
. (2)

Combining Inequalities 1 and 2, we get

exp (−εLi∗) ≤ exp

(
−εELA +

ε2T

2
+ ln(N)

)
=⇒ −εLi∗ ≤ −εELA +

ε2T

2
+ ln(N)

=⇒ ELA − Li∗ ≤
εT

2
+

ln(N)

ε
.

Theorem 2. The Multiplicative Weights algorithm with ε =
√

2 ln(N)
T guarantees regret at most

√
2 ln(N)T .

Proof. Follows immediately by plugging this choice of ε into Theorem 1. (We can derive this ε by
minimizing the bound of Theorem 1, e.g. by taking the derivative.)

In particular, for a fixed number of actions N , this regret guarantee is O(
√
T ), which makes the

average per-step regret guarantee O(1/
√
T ). For large T , this is almost zero – “no regret”.

3 Applications and variations

3.1 Variations and names

The Multiplicative Weights algorithm is sometimes also called “Exponential Weights”. Another algo-
rithm that is also called Multiplicative Weights, or sometimes called “Polynomial Weights”, is the same,
except for the update rule:

wt+1
i = wt

i(1− ε`ti).

Remember the useful inequality 1− ε`ti ≤ exp(−ε`ti). Furthermore, when ε is close to zero and `ti ∈ [0, 1],
this approximation is quite close. So the two algorithms are almost the same, and both satisfy the same
regret guarantee (up to small constant factors).

3.2 Learning from expert advice

An important online learning setting is the following. There are N experts who give you advice each
day t = 1, . . . , T . You pick one of the experts and follow their advice. Each expert i’s advice obtains a
loss `ti ∈ [0, 1]. You obtain the loss of the expert you followed.

We can cast this problem as online learning and apply Multiplicative Weights, obtaining an average
per-round regret bound of O(1/

√
T ). In other words, over time, the time-average performance of our

algorithm approaches the time-average performance of the best expert.

14-4


