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Outline:

1 Prophet inequalities - overview

2 This work: introducing correlations
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A stopping time problem

Given: independent X1, . . . , Xn, known distributions

Realizations are revealed one by one . . .
. . . algorithm can stop at any time i and take Xi

OPT := maxiXi achieved by the prophet

Goal: ALG ≥ (?) ·OPT “prophet inequality”
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Known results

Optimal, backward-induction solution: ALG ≥ 0.5 ·OPT.

Samuel-Cahn 1984: a threshold policy achieves 0.5:

1 Let τ = median of maxiXi

2 Stop at first Xi exceeding τ

Observed by Kleinberg+Weinberg 2012: τ = 0.5E [maxiXi] also achieves
0.5 approximation ratio.1

1Further reading:
http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html
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Half-the-expected-max policy

Proof.

Let P = Pr[maxiXi ≥ τ ].

E[ALG] = P · τ +

n∑
i=1

Pr

[
max
i′<i

Xi′ < τ

]
E
[
(Xi − τ)+

]
≥ P · τ + (1− P )

n∑
i=1

E
[
(Xi − τ)+

]
≥ P · τ + (1− P )E

[
max
i

(Xi − τ)+
]

≥ P · τ + (1− P )

(
E
[
max
i
Xi

]
− τ
)

≥ P · τ + (1− P )τ

= τ.
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Why threshold policies?

1 Threshold policies are robust
Variables can arrive in any order, . . .

2 Single-item auction:

Buyers arrive sequentially with secret valuations Xi

Post a price τ
First buyer with Xi ≥ τ purchases
“welfare” ≥ 0.5 optimal
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This work: correlations

What if X1, . . . , Xn are correlated?

(Known: constant-factor approx cannot be achieved)

Question 1: how to model (limited) correlation?

Question 2: do threshold policies give prophet inequalities?
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Outline:

The linear correlations model

Lower bound instance

Key tool: Augmentation Lemma

Results
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Linear correlations model

Assume: there exist independent Y1, . . . , Ym such that

X = A ·Y

for A ∈ Rm×n≥0 .

Parameters:

` column sparsity (max. nonzero entries per column)

k row sparsity

Recall: Algorithm knows A and distributions of Y, but only observes
realizations of X.
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Lower bound

Theorem

No algorithm can guarantee better than O
(

1
min{`,k}

)
approximation ratio.

Tower variables:

Yj =

{
1
εj

w.prob. εj

0 o.w.

X1 = Y1 + ε · Y2 + · · ·+ εnYn

X2 = Y2 + ε · Y3 + · · ·+ εn−1Yn
...

Xn−1 = Yn−1 + εYn

Xn = Yn

Relevent ideas. Essentially, at most
one Yj is nonzero.

OPT ≈ n because it gets 1 from
each Yj on avg.

ALG ≈ 1 (consider dilemma when
Xi 6= 0).

Even for ` = k = 2, threshold
algorithms achieve at best 1

n .

10 / 18



Lower bound

Theorem

No algorithm can guarantee better than O
(

1
min{`,k}

)
approximation ratio.

Tower variables:

Yj =

{
1
εj

w.prob. εj

0 o.w.

X1 = Y1 + ε · Y2 + · · ·+ εnYn

X2 = Y2 + ε · Y3 + · · ·+ εn−1Yn
...

Xn−1 = Yn−1 + εYn

Xn = Yn

Relevent ideas.

Essentially, at most
one Yj is nonzero.

OPT ≈ n because it gets 1 from
each Yj on avg.

ALG ≈ 1 (consider dilemma when
Xi 6= 0).

Even for ` = k = 2, threshold
algorithms achieve at best 1

n .

10 / 18



Lower bound

Theorem

No algorithm can guarantee better than O
(

1
min{`,k}

)
approximation ratio.

Tower variables:

Yj =

{
1
εj

w.prob. εj

0 o.w.

X1 = Y1 + ε · Y2 + · · ·+ εnYn

X2 = Y2 + ε · Y3 + · · ·+ εn−1Yn
...

Xn−1 = Yn−1 + εYn

Xn = Yn

Relevent ideas. Essentially, at most
one Yj is nonzero.

OPT ≈ n because it gets 1 from
each Yj on avg.

ALG ≈ 1 (consider dilemma when
Xi 6= 0).

Even for ` = k = 2, threshold
algorithms achieve at best 1

n .

10 / 18



Lower bound

Theorem

No algorithm can guarantee better than O
(

1
min{`,k}

)
approximation ratio.

Tower variables:

Yj =

{
1
εj

w.prob. εj

0 o.w.

X1 = Y1 + ε · Y2 + · · ·+ εnYn

X2 = Y2 + ε · Y3 + · · ·+ εn−1Yn
...

Xn−1 = Yn−1 + εYn

Xn = Yn

Relevent ideas. Essentially, at most
one Yj is nonzero.

OPT ≈ n because it gets 1 from
each Yj on avg.

ALG ≈ 1 (consider dilemma when
Xi 6= 0).

Even for ` = k = 2, threshold
algorithms achieve at best 1

n .

10 / 18



Lower bound

Theorem

No algorithm can guarantee better than O
(

1
min{`,k}

)
approximation ratio.

Tower variables:

Yj =

{
1
εj

w.prob. εj

0 o.w.

X1 = Y1 + ε · Y2 + · · ·+ εnYn

X2 = Y2 + ε · Y3 + · · ·+ εn−1Yn
...

Xn−1 = Yn−1 + εYn

Xn = Yn

Relevent ideas. Essentially, at most
one Yj is nonzero.

OPT ≈ n because it gets 1 from
each Yj on avg.

ALG ≈ 1 (consider dilemma when
Xi 6= 0).

Even for ` = k = 2, threshold
algorithms achieve at best 1

n .

10 / 18



Upper bounds

Main idea: We can achieve a matching Ω
(

1
min{`,k}

)
bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e

1
`OPT.

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e3

1
kOPT.

Inclusion-threshold: Commit to discarding certain Xi in advance; apply
a threshold to the rest.

Hope: approximate original independent prophets problem on a 1
` fraction

of the input.

Problem: correlations still remain!

11 / 18



Upper bounds

Main idea: We can achieve a matching Ω
(

1
min{`,k}

)
bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e

1
`OPT.

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e3

1
kOPT.

Inclusion-threshold: Commit to discarding certain Xi in advance; apply
a threshold to the rest.

Hope: approximate original independent prophets problem on a 1
` fraction

of the input.

Problem: correlations still remain!

11 / 18



Upper bounds

Main idea: We can achieve a matching Ω
(

1
min{`,k}

)
bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e

1
`OPT.

Theorem

There is an inclusion-threshold algorithm achieving ALG ≥ 1
2e3

1
kOPT.

Inclusion-threshold: Commit to discarding certain Xi in advance; apply
a threshold to the rest.

Hope: approximate original independent prophets problem on a 1
` fraction

of the input.

Problem: correlations still remain!

11 / 18



Key tool: Augmented Prophets Problem

Prophet instances of the form Xi = Zi +Wi where:

Zi is independent of X1, . . . , Xi−1

but Wi may be chosen adversarially conditioned on Z1,W1, . . . , Zi.

however OPT = maxi Zi.

Story:

We have a standard prophets problem Z1, . . . , Zn.

But a mischievious genie intercepts and augments arrivals with Wi

Genie can only increase Xi but tries to mess up ALG

The genie cannot see the future (Zi+1 is independent of Wi, etc)

Fact: median-of-max rule achieves 0 on augmented prophets problem!
Xi = i.i.d. Bernoulli(ε); augment first arrival slightly.
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Lemma (Augmentation Lemma)

Setting a threshold τ = 0.5E [maxi Zi] achieves ALG ≥ 0.5 ·OPT on the
augmented prophets problem. =⇒ ignore the genie!

Proof.

Let P = Pr[maxiXi ≥ τ ]. Let Ei be event that maxi′<iXi′ < τ .

E[ALG] = P · τ +

n∑
i=1

Pr [Ei]E
[
(Xi − τ)+

∣∣ Ei]
≥ P · τ + (1− P )

n∑
i=1

E
[
(Zi − τ)+

∣∣ Ei]
≥ P · τ + (1− P )

n∑
i=1

E
[
(Zi − τ)+

]
= τ.
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Proof of Theorem 2

Column sparsity `: Each Yj appears in at most ` different arrivals Xi.
Algorithm:

1 Include each Xi independently with prob. 1
` ; discard others.

2 Let Ti = {j : Aij > 0 and for all included i′ < i, Ai′j = 0}.
3 Let Zi =

∑
j∈Ti AijYj

4 Let Wi =
∑

j 6∈Ti AijYj

5 Solve augmented prophets problem on only included Xi = Zi +Wi

Fact (Augmentation Lemma): ALG ≥ 1
2 E[maxi Zi].

Claim: E[maxi Zi] ≥ 1
e
1
` E[maxiXi].

Proof: each Yj appears in exactly one included Xi w.prob. ≥ 1
e
1
` .
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Proof of Theorem 3

Row sparsity k: Each Xi depends on at most k different variables Yj .

Observation:

Take any instance

Prepend it with 1 million copies of Xi = 0.00000001Y1

Row sparsity is unchanged

Conclusion: Subsampling must depend on “importance” of each row.

Algorithm outline:

1 Construct subsampled set S of arrivals next!

2 Construct Zi,Wi and use augmentation threshold as before

Claim: We have a subsampling scheme such that
E[maxi Zi] ≥ 1

e3
1
k E[maxiXi].
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Claim: We have a subsampling scheme such that
E[maxi Zi] ≥ 1

e3
1
k E[maxiXi].

Scheme to construct S ⊆ {1, . . . , n}:
1 For each Yj , let i∗(j) = arg maxiAij .

2 Create graph on {1, . . . ,m} with edge (j, j) if Ai∗(j)j′ > 0.

3 Permute {1, . . . ,m} such that for all t, there are at most k edges
from vertices π(1), . . . , π(t− 1) to π(t).

4 For t = 1, . . . ,m, w.prob. 1
k add i∗(π(t)) to S and delete all vertices

from π with edges to or from π(t).

Claim 1: Such a permutation π exists.
Out-degree ≤ k, so average in-degree ≤ k, so some vx can be placed last; repeat.

Claim 2: Zi∗(j) = Yj w.prob. ≥ 1
e3

1
` (and then no Zi′ includes Yj).

It has ≤ 2k edges to earlier vertices, which all fail w.prob. ≥ 1
e2 ; then it is chosen

w.prob. 1
` ; then all others with Ai∗(j)j′ > 0 fail to be included w.prob. ≥ 1

e .
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Extensions

Suppose: algorithm can take ≤ r arrivals.
“r-uniform matroid constraint”

OPT = sum of r largest Xis

Observation: Lower-bound can be extended: For fixed `, unbounded row
sparsity, no algorithm beats O

(
1
`

)
.

Theorem: For fixed k, as n, r →∞, we can achieve 1− o(1)
approximation ratio.

Key ingredient: An Augmentation Lemma for the cardinality-r prophet
problem.
Much harder!
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Recap

Prophet problem with linear correlations:

X = A ·Y

Augmentation Lemma: There exists a 0.5-approx-ratio alg. for the
augmented prophets problem.

Main result: Inclusion-threshold algorithms achieve

Ω

(
1

min{row sparsity, col sparsity}

)
and this is tight for any algorithm.

Tight results for cardinality-k version as well; reveals unbounded col.
sparsity is the harder problem.
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