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Outline:
Prophet inequalities - overview

This work: introducing correlations
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A stopping time problem

Given: independent X1, ..., X, known distributions

Realizations are revealed one by one ...
... algorithm can stop at any time 7 and take X;

OPT := max; X; achieved by the prophet

Goal: ALG > (7)- OPT “prophet inequality”
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Known results

Optimal, backward-induction solution: ALG > 0.5- OPT.

Samuel-Cahn 1984: a threshold policy achieves 0.5:
Let 7 = median of max; X;
Stop at first X; exceeding 7

Observed by Kleinberg+Weinberg 2012: 7 = 0.5 [max; X;] also achieves
0.5 approximation ratio.!

YFurther reading:
http://bowaggoner. com/blog/2018/08-25-prophet-inequalities/index.html


http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

Half-the-expected-max policy

Let P = Pr[max; X; > 7.

E[ALG] =P -7+ iPr [maxXi/ < 7':| E [(Xl — 7')+]

1 i<
2P-7+(1—P)iE[(Xi—T)+]

>P-7+(1-P)E [maX(Xi _T)+]

7

s pr1-) (& o] 1)
P.r+(1-P)r
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Why threshold policies?

Threshold policies are robust
Variables can arrive in any order, . ..
Single-item auction:
Buyers arrive sequentially with secret valuations X;
Post a price T

First buyer with X; > 7 purchases

[
[
[
m “welfare” > 0.5 optimal
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This work: correlations

What if Xq,..., X, are correlated?
(Known: constant-factor approx cannot be achieved)
Question 1: how to model (limited) correlation?

Question 2: do threshold policies give prophet inequalities?



Outline:

The linear correlations model
Lower bound instance

Key tool: Augmentation Lemma

Results
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Linear correlations model

Assume: there exist independent Y7, ..., Y, such that
X=A'Y

for A € Rgoxn.

Parameters:

® /  column sparsity (max. nonzero entries per column)

B Lk row sparsity

Recall: Algorithm knows A and distributions of Y, but only observes
realizations of X.
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Lower bound

No algorithm can guarantee better than O <m> approximation ratio.
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Lower bound

No algorithm can guarantee better than O (M) approximation ratio.

Tower variables: Relevent ideas. Essentially, at most
1 j o
y. = w.prob. € one Yj is nonzero.
=
0 o.w.

OPT =~ n because it gets 1 from

X, =Yi+e- Yot - +erY, each Y; on avg.

_ n—1
Xo=Yo+e Y5+ -4+ Vo Araa1 (consider dilemma when
X; £ 0).

Xn-1=Yo1+e¥n Even for { = k = 2, threshold
Xn =Y, algorithms achieve at best %
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Upper bounds

Main idea: We can achieve a matching €2 <m> bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG > %%OPT.

Theorem
There is an inclusion-threshold algorithm achieving ALG > %%OPT.

Inclusion-threshold: Commit to discarding certain X; in advance; apply
a threshold to the rest.

Hope: approximate original independent prophets problem on a % fraction
of the input.

Problem: correlations still remain!
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Key tool: Augmented Prophets Problem

Prophet instances of the form X; = Z; + W; where:
B 7; is independent of Xq,..., X, 1
® but W; may be chosen adversarially conditioned on Z1, W1, ..., Z;.
® however OPT = max; Z;.

Story:
® We have a standard prophets problem 71,...,Z,.
® But a mischievious genie intercepts and augments arrivals with W;
B Genie can only increase X; but tries to mess up ALG

® The genie cannot see the future (Z;; is independent of W;, etc)

Fact: median-of-max rule achieves 0 on augmented prophets problem!
X, = i.i.d. Bernoulli(e); augment first arrival slightly.



Lemma (Augmentation Lemma)

Setting a threshold T = 0.5 E [max; Z;| achieves ALG > 0.5- OPT on the
augmented prophets problem. = ignore the genie!

Proof
Let P = Pr[max; X; > 7]. Let E; be event that max; -; X; < 7.

E[ALG] =P -7+ iPr [E)E[(X; — )" | Ei]
>P.7+(1-P E:E : Ei]

>P.r+(1-P ZE



Proof of Theorem 2

Column sparsity ¢: Each Y; appears in at most ¢ different arrivals X;.
Algorithm:

Include each X; independently with prob. %; discard others.

Let T; = {j : A;; > 0 and for all included ¢ <4, Ay; = 0}.
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B Let W, =Y, AyY;
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Proof of Theorem 2

Column sparsity ¢: Each Y; appears in at most ¢ different arrivals X;.
Algorithm:

Include each X; independently with prob. %; discard others.

Let T; = {j : A;; > 0 and for all included ¢ <4, Ay; = 0}.

Let Zi = Yoy, AijY;

B Let W, =Y, AyY;

B soive augmented prophets problem on only included X; = Z; + W;

Fact (Augmentation Lemma): ALG >  E[max; Z;].

Claim: E[max; Z;] > 14 E[max; X;].
Proof: each Y; appears in exactly one included X; w.prob. > é
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Proof of Theorem 3

Row sparsity k: Each X; depends on at most k different variables Y.

Observation:
® Take any instance
B Prepend it with 1 million copies of X; = 0.00000001Y;
B Row sparsity is unchanged

Conclusion: Subsampling must depend on “importance” of each row.

Algorithm outline:
Construct subsampled set .S of arrivals next!

Construct Z;, W; and use augmentation threshold as before

Claim: We have a subsampling scheme such that
E[maxi Zl] > L1 E[maxi Xz]

ek
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Claim: We have a subsampling scheme such that
E[maxi Zz] > e%% E[maxi Xz]

Scheme to construct S C {1,...,n}:
For each Yj, let i*(j) = arg max; A;;.
Create graph on {1,...,m} with edge (j, j) if 4;-(;);» > 0.
Permute {1,...,m} such that for all ¢, there are at most k edges
from vertices 7(1),...,m(t — 1) to m(t).

BArort=1,...,m, w.prob. # add i*(7(t)) to S and delete all vertices
from 7 with edges to or from 7 (t).

Claim 1: Such a permutation 7 exists.
Out-degree < k, so average in-degree < k, so some vx can be placed last; repeat.

Claim 2: Z;.(;) = Yj w.prob. > % (and then no Z; includes Y;).
It has < 2k edges to earlier vertices, Wh/ch all fail w.prob. > 6% then it is chosen
w.prob. %,’ then all others with A;.(jy;; > 0 fail to be included w.prob. > %
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Extensions

Suppose: algorithm can take < 7 arrivals.
“r-uniform matroid constraint”

OPT = sum of r largest X;s

Observation: Lower-bound can be extended: For fixed ¢, unbounded row
sparsity, no algorithm beats O (%)

Theorem: For fixed k, as n,r — 0o, we can achieve 1 — o(1)
approximation ratio.

Key ingredient: An Augmentation Lemma for the cardinality-r prophet
problem.
Much harder!



Prophet problem with linear correlations:

X=A'Y

Augmentation Lemma: There exists a 0.5-approx-ratio alg. for the
augmented prophets problem.

Main result: Inclusion-threshold algorithms achieve

1
Q
(min{row sparsity, col sparsity})

and this is tight for any algorithm.

Tight results for cardinality-k version as well; reveals unbounded col.
sparsity is the harder problem.



