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Drawing Conclusions from Data

Given i.i.d. samples from a 
discrete distribution A,

what can you tell me about A?

This paper:
● Learning: Estimate A “accurately”

● Uniformity Testing:
Is A uniform or “far from” uniform?
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Previously studied: ℓ1 distance
(equivalently: total variation distance):

‖A−B‖1=∑i=1

n
|A i −Bi |

prob

1 2 3 n4 ...

A
B
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prob

1 2 3 n4 ...

A
B

This work: ℓp distance, p ≥1

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

‖A−B‖∞ = max
i=1...n

|A i−Bi |
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This work: ℓp distance, p ≥1

Given n, ϵ:

Learning: Output Â such that                     .

Uniformity testing: If A=U, output “unif”; if                  , “not”.

Both cases: Except with constant failure probability � (e.g. 1/3)

‖A−U‖p ≥ ϵ

‖Â−A ‖p ≤ ϵ

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

‖A−B‖∞ = max
i=1...n

|A i−Bi |
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Results

● Upper and lower bounds for 
each ℓp metric. 

● Matching up to constant 
factors in most cases.

Unlike ℓ1 case:

● Exists a sufficient # of 
samples independent of n

● Behavior differs in “small” 
and “large” n regimes

How many samples
do I need?

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Why care about ℓp?
Why Bo cares:

● I like the math/probability involved

● Fundamental problems deserve elegant algorithms/proofs
(and small constants)

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Why else you might care:

● Small data in a big world.
What if we do not have enough samples to draw confident ℓ1 
conclusions?

● ℓp testers/learners are often useful as subroutines
(Batu et al 2013, Diakonikolas et al 2015, …)

Why care about ℓp? ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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What was known?
● Learning: order-optimal ℓ1 (folklore),

also ℓ2 and ℓ∞. 

● Uniformity testing:

– ℓ1: order-optimal lower, and upper for “very big” n (Paninski 2008)

– Independently (Diakonikolas, Kane, Nikishkin 2015):
order-optimal ℓ1, and ℓ2 for small-n regime

● Note: many cases “immediate” from prior work,
most (all?) cases probably “easy” to experts

● But hopefully when taken together, big picture insights emerge

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

O( n
ϵ

2 )

O(√n
ϵ

2 )
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Outline

● Introductory stuff

● Learning

● Uniformity testing

● Summary

✓
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Learning
Emperor's new plot

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Learning ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Learning ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

For p >1:

● Exists a sufficient # of 
samples independent of n

● Behavior differs in 
“small” and “large” n 
regimes
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Learning Alg

1. Let Pr[i ] ∝ # samples of i

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Learning Alg

1. Let Pr[i ] ∝ # samples of i

Analysis:

 - Elegant “folklore” proof for ℓ2 (thanks Clément!)

 - Clément and I extended to general ℓp and large-n cases

Theorem (in particular):

 - For p = 1,    samples are sufficient to learn.

 - For p ≥ 2,    samples are sufficient to learn.

1
δ

n
ϵ

2

1
δ

1

ϵ
2

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Learning Alg

1. Let Pr[i ] ∝ # samples of i

Analysis:

 - Elegant “folklore” proof for ℓ2 (thanks Clément!)

 - Tweaks for ℓp and large-n cases

Theorem (in particular):

 - For p = 1,    samples are sufficient to learn.

 - For p ≥ 2,    samples are sufficient to learn.

1
δ

n
ϵ

2

1
δ

1

ϵ
2

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Given p, consider Holder conjugate q : 

small-n regime:

large-n regime:

p: 1
5
4

4
3

3
2

2 ... ∞

q: ∞ 5 4 3 2 ... 1

1
p

+
1
q

= 1

n ≤
1
ϵq

n ≥
1

ϵq
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Learning ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Threshold: n =
1

ϵq

O( 1

ϵq )
O( n

(n1/q
ϵ )

2 )

For p >1:

● Exists a sufficient # of 
samples independent of n

● Behavior differs in 
“small” and “large” n 
regimes
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Outline

● Introductory stuff

● Learning

● Uniformity testing

● Summary

✓

✓
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Classic Coin Question

Coin: either fair or one side with ϵ more probability.

Q: How many flips to tell?

A:    .O( 1

ϵ2 )
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Classic Dice Question?

6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer?
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6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer?

A: Fewer!
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Classic Dice Question?

6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer?

A: Fewer!
samples

1 2

samples

1 2 32 4 5 6
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Classic Dice Question?

6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer?

A: Fewer! (ℓ∞)

For ℓ1, need more.
In between?
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Testing, 1≤ p ≤ 2 ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Testing Alg ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Collision: pair of samples that are both of the same coordinate

 

Prior work counting collisions: Paninski (2008) (sort of); Goldreich and Don 
(2000); Batu, Fortnow, Rubinfeld, and Smith (2005)



26

Testing Alg ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

1. Let C = # collisions

2. Pick threshold T 

3. If C ≤ T,  output “uniform”; else, “not”.

Alg is optimal for all 1 ≤ p ≤ 2, all regimes! (by selecting 
# samples and T  appropriately)
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Testing Alg ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

1. Let C = # collisions

2. Pick threshold T 

3. If C ≤ T,  output “uniform”; else, “not”.

Alg is optimal for all 1 ≤ p ≤ 2, all regimes! (by selecting 
# samples and T  appropriately)

Theorem (in particular):

 - For p = 1,     samples are sufficient to test uniformity.

 - For p = 2,  max    samples suffice.

9

δ

√n
ϵ

2

9

δ

1

√n ϵ
2 ,

9

δ

1

ϵ
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Testing, 1≤ p ≤ 2 ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Threshold: n =
1

ϵq

O(√ 1
ϵq )O( √n

(n1/q
ϵ )

2 )
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ℓ∞ Testing ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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ℓ∞ Testing ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Theorem (for p = ∞):

 - If (“small”), samples are necessary/sufficient.

 - If (“large”), samples are necessary/sufficient.

Ө ( logn
n ϵ

2 )

Ө (1

ϵ )

Ө ( n
logn ) ≤ 1

ϵ

Ө ( n
logn ) ≥ 1

ϵ

Note:
● Still have “small” and “large” 

regimes, but log(n) gets involved
(Bounds still match at threshold)
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ℓ∞ Testing ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Theorem (for p = ∞):

 - If (“small”), samples are necessary/sufficient.

 - If (“large”), samples are necessary/sufficient.

Ө ( logn
n ϵ

2 )

Ө (1

ϵ )

Ө ( n
logn ) ≤ 1

ϵ

Ө ( n
logn ) ≥ 1

ϵ

Alg:
● Small-n: look for “outlier” coordinate

● Large-n: “bucket” into n* groups and 
look for outlier bucket

Note:
● Still have “small” and “large” 

regimes, but log(n) gets involved
(Bounds still match at threshold)
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Gap for 2 < p < ∞

● ℓ2 alg  sufficient→
ℓ∞ bound  necessary→

● Gap only in
small-n case

● Seems to need
different ideas

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Outline

● Introductory stuff

● Learning

● Uniformity testing

● Summary

✓

✓

✓
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Algorithms Summary

● Learning: naive alg is order-optimal everywhere

● Uniformity testing: Collision Tester is order-optimal for 1 ≤ p ≤ 2

● Uniformity testing for ℓ∞: “almost-naive” alg is order-optimal

Learning Uniformity Testing
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Ideas Summary

Learning Uniformity Testing

For p >1:

● Exists a sufficient # of samples independent of n

● Behavior differs in “small” and “large” n regimes

●      seems to upper-bound “apparent support size”1

ϵ
q

O( 1

ϵq )
O(√ 1

ϵq )
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Future Work
● Close gap for uniformity testing, 2 < p < ∞, small n

● Strengthen “tightness” of lower bound for small-n learning, 1 ≤ p < 2

● Test and learn “thin” distributions?

● Test and learn when n is not known?

● Test and learn for other “exotic” metrics? (Do Ba, 
Nguyen, Nguyen, Rubinfeld 2011)

‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p
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Future Work ‖A−B‖p = (∑i=1

n
|A i −Bi |

p)
1
p

Thanks!

● Close gap for uniformity testing, 2 < p < ∞, small n

● Strengthen “tightness” of lower bound for small-n learning, 1 ≤ p < 2

● Test and learn “thin” distributions?

● Test and learn when n is not known?

● Test and learn for other “exotic” metrics? (Do Ba, 
Nguyen, Nguyen, Rubinfeld 2011)
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