
Colorado CSCI 5454: Algorithms August 29, 2019

Lecture 2
Lecturer: Bo Waggoner Scribe: Bo Waggoner

Depth First Search

These notes give more formal proofs of topics covered in class. They are also examples of how homework
solutions could be written.

1 Definitions

Recall that a directed graph G = (V,E) has a set of vertices V and edges E. We usually say |V | = n
and |E| = m. We represent an edge e ∈ E as an ordered pair e = (u, v). Recall that if G is undirected,
then whenever u and v have an edge between them, it’s true both that (u, v) ∈ E and (v, u) ∈ E.

Recall that a path in G is a sequence of vertices v1, . . . , vk, where each vertex vi ∈ V , such that for
each pair of consecutive vertices vi and vi+1, there is an edge (vi, vi+1) ∈ E. The length of a path is the
number of edges in the path, i.e. number of vertices minus one.

A cycle is a path whose first and final vertex are the same. A path is simple if it does not contain
any vertex more than once, and a cycle is simple if it does not contain any vertex more than once except
the start/end vertex, and does not re-use any edges. (Note in an undirected graph, (u, v) and (v, u) are
considered the same edge.)

In an undirected graph, we say v is a neighbor of u in a graph if there is an edge (u, v); and the
degree of u is the number of neighbors it has.

In a directed graph, we usually say v is a neighbor of u if either edge (u, v) or edge (v, u) or both are
present. In this case, the out-degree of u is the number of edges from u to some other vertex, and the
in-degree is the number of edges from some other vertex to u.

2 Reachability

The Reachability problem is: given a graph G = (V,E) and two vertices s, t, output True if there is a
path from s to t, False otherwise.

We will suppose G is represented as an adjacency list.
Question: design an algorithm for this problem and prove its correctness and running time.

Algorithm 1 DFS-Reachability

1: Input: Graph G = (V,E), vertices s, t
2: Define array is marked of length n
3: Set is marked[v] = False for v = 1, . . . , n
4: Call DFS-explore(s)
5: Return is marked[t]

Subroutine 2 DFS-explore(v)

1: Set is marked[v] = True
2: for each neighbor w of v do
3: if is marked[w] == False then
4: DFS-explore(w)
5: end if
6: end for

2-1

Correctness - proof sketch: We show that the algorithm outputs True if and only if there is a path
from s to t. The algorithm outputs True if and only if t is marked at some point, which occurs if and
only if we call DFS-explore(t) at some point. This is true if and only if DFS-explore(v) was called on
some v where there is an edge (v, t). This is true if and only if either (1) v = s or (2) DFS-explore(u)
was called on some vertex u where there is an edge (u, v). By repeating this argument for u and so on,
we see that DFS-explore(t) is called if and only if there is a sequence of vertices starting at s and ending
at t, for example s, u, v, t, such that there is an edge between each pair of consecutive vertices: a path
from s to t.

Note. The above is not a fully formal proof, but would be a good proof sketch to give on a homework.
A fully formal proof would use e.g. induction.

Running time - proof sketch: The body of DFS-Reachability takes O(n) time, as it only needs to
initialize the length-n array, call DFS-explore, and look up t in the array.

For DFS-explore, we first argue it is called at most once per vertex, so at most n times. This follows
because we only call it on unmarked vertices, and every time we call it, we immediately mark v.

We analyze DFS-explore carefully be looking at each line and asking how many times it executes total
over the entire course of the algorithm (this is the idea behind “amortized analysis”). Line 1 executes
once per call, and we argued it is called at most n times, so this contributes O(n) to the running time.

The body of each for loop, lines 3-5, each contribute a constant amount of operations. And the
for loop executes once per edge out of v, in other words, the total amount of work in the form loop is
O(out-degree(v)). Over the course of the entire algorithm, this totals at most

O

(∑
v∈V

out-degree(v)

)
= O(m)

where m is the number of edges.
So we have shown that the algorithm’s total running time is at most O(n) +O(m) ∈ O(n+m).

3 Topological sort

A directed, acyclic graph (DAG) is a directed graph that has no cycles.
A permutation (or ordering) π of the vertices is a function where π(1) is the first vertex in the

ordering, π(2) is the second, etc.
A topological sort of a DAG G = (V,E) is a permutation π such that every edge in the graph points

forward, i.e., for all edges (u, v) ∈ E, π−1(u) < π−1(v). In other words, u must be located prior to v in
the ordering.

Here π−1(u) is inverse function of π, which gives the location of u in the ordering.1 When we plug a
location into π, it gives us a vertex. When we plug the vertex into π−1, it tells us the location.

Algorithm 3 DFS-Topo

1: Input: Graph G = (V,E), vertices s, t
2: Define array is marked of length n
3: Set is marked[v] = False for v = 1, . . . , n
4: Create list A, initially empty
5: for each vertex v do
6: if is marked[v] == False then
7: DFS-explore-2(v)
8: end if
9: end for

10: Return A

1Thanks to a student for mentioning that, in lecture, I forgot to write the inverse signs. -Bo.

2-2

Subroutine 4 DFS-explore-2(v)

1: Set is marked[v] = True
2: for each neighbor w of v do
3: if is marked[w] == False then
4: DFS-explore-2(w)
5: end if
6: end for
7: add v to beginning of list A

Algorithm description - note for homework. If this were a homework problem, then given that
we have covered DFS in class and in the textbook chapter, the following would be a good description of
the algorithm. “We do a depth-first search from all vertices in order, skipping them if they are already
marked. We maintain a list A, initially empty. When the depth-first-search visits a vertex, after iterating
through all of its neighbors, we add it to the beginning of the list A.”

Correctness - proof sketch. We argue that every vertex is added to A exactly once, so it is a
permutation. Then we argue that it is a topological sort, i.e. all edges point forward.

First, we add a vertex v to A only when we call DFS-explore-2(v). We only call DFS-explore-2(v) at
most once per vertex, because we only call it if v is unmarked and then we immediately mark v. Finally,
we call it for every vertex because of the for loop in DFS-Topo (line 5). So A is a permutation.

Now, consider any edge (v, w). We must argue that v is added to the list A after w is added to the
list. Then, v will be earlier in the list than w.

At some point, we call DFS-explore-2(v). During the for loop, we reach neighbor w. There are two
cases. If w is already marked, then we have already called DFS-explore-2(w) and it has completed. So
w has already been added to list A. If w is not already marked, then we call DFS-explore-2(w) now and
wait for it to complete. Then, w will have been added to list A. Only after this loop do we add v to the
beginning of A, so in either case v is before w in the list.

Running time - proof sketch. We use the previous DFS analysis. Here, we have added a for loop
to DFS-Topo (line 5). However, the total work done in DFS-Topo is still O(n), since we execute the
loop n times. Furthermore, it is still true that DFS-explore-2 is called at most n times, and the analysis
of its running time in lines 1-5 is the same, so the total work done is still at most O(n + m). We now
need to consider the amount of work required to build the list A. One implementation is to build it
backwards: make A an array, and add each new vertex to the end of the array. This takes O(1) time
per addition, so O(n) work total. Then, at the end of the algorithm, we write A onto the output array
in reverse, which takes O(n) time. So the total running time is still O(n+m).

2-3

